- -

Enhanced hydrothermal resistance of Y-TZP ceramics through colloidal processing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced hydrothermal resistance of Y-TZP ceramics through colloidal processing

Mostrar el registro completo del ítem

Rayón Encinas, E.; Moreno, R.; Alcazar, C.; Salvador Moya, MD.; Manjón Herrera, FJ.; Jimenez-Pique, E.; Llanes, L. (2013). Enhanced hydrothermal resistance of Y-TZP ceramics through colloidal processing. Journal of the American Ceramic Society. 96(4):1070-1076. https://doi.org/10.1111/jace.12225

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58957

Ficheros en el ítem

Metadatos del ítem

Título: Enhanced hydrothermal resistance of Y-TZP ceramics through colloidal processing
Autor: Rayón Encinas, Emilio Moreno, R. Alcazar, C. Salvador Moya, Mª Dolores Manjón Herrera, Francisco Javier Jimenez-Pique, E. Llanes, L.
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
Two commercial zirconia powders with 3mol% of yttria (TZ3YE and TZ3YS, labeled as ZE and ZS, respectively) supplied by Tosoh (Japan) were used for this study. Maximum colloidal stability for ZE was achieved by dispersing ...[+]
Palabras clave: Mechanical-properties , Electric field , Zirconia , Transformation , Nanoindentation , 3Y-TZP , Size , Degradation , Behavior , Future
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of the American Ceramic Society. (issn: 0002-7820 ) (eissn: 1551-2916 )
DOI: 10.1111/jace.12225
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1111/jace.12225
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2008-03398/ES/ANALISIS MEDIANTE TOMOGRAFIA ELECTRONICA DEL DAÑO POR ARENADO, ENVEJECIMIENTO Y FATIGA DE CONTACTO EN ESTRUCTURAS LAMINARES DE CERAMICAS DENTALES/ /
info:eu-repo/grantAgreement/UPV//PAID-02-11-1752/
info:eu-repo/grantAgreement/MICINN//MAT2009-14144-C03-02/ES/Evaluacion De Propiedades De Nuevos Recubrimientos Nanoestructurados Obtenidos Por Proyeccion Por Plasma Atmosferico A Partir De Disoluciones Y Suspensiones Concentradas De Nanoparticulas/
info:eu-repo/grantAgreement/MICINN//MAT2009-14369-C02-01/ES/Ensamblaje De Materiales Nanoestructurados Mediante Procesamiento Coloidal Y Laser Para Aplicaciones Fotonicas Y Estructurales/
Agradecimientos:
This work has been supported by Spanish Ministry of Science and Innovation (Projects MAT2009-14144-C03-02, MAT2009-14369-C02-01, and MAT2008-03398). Authors thank Prof. M. Anglada for helpful comments and discussion. R ...[+]
Tipo: Artículo

References

Basu, B., Vleugels, J., & Biest, O. V. der. (2004). Toughness tailoring of yttria-doped zirconia ceramics. Materials Science and Engineering: A, 380(1-2), 215-221. doi:10.1016/j.msea.2004.03.065

Evans, A. G. (1990). Perspective on the Development of High-Toughness Ceramics. Journal of the American Ceramic Society, 73(2), 187-206. doi:10.1111/j.1151-2916.1990.tb06493.x

Aza, A. H., Chevalier, J., Fantozzi, G., Schehl, M., & Torrecillas, R. (2003). Slow-Crack-Growth Behavior of Zirconia-Toughened Alumina Ceramics Processed by Different Methods. Journal of the American Ceramic Society, 86(1), 115-120. doi:10.1111/j.1151-2916.2003.tb03287.x [+]
Basu, B., Vleugels, J., & Biest, O. V. der. (2004). Toughness tailoring of yttria-doped zirconia ceramics. Materials Science and Engineering: A, 380(1-2), 215-221. doi:10.1016/j.msea.2004.03.065

Evans, A. G. (1990). Perspective on the Development of High-Toughness Ceramics. Journal of the American Ceramic Society, 73(2), 187-206. doi:10.1111/j.1151-2916.1990.tb06493.x

Aza, A. H., Chevalier, J., Fantozzi, G., Schehl, M., & Torrecillas, R. (2003). Slow-Crack-Growth Behavior of Zirconia-Toughened Alumina Ceramics Processed by Different Methods. Journal of the American Ceramic Society, 86(1), 115-120. doi:10.1111/j.1151-2916.2003.tb03287.x

Hannink, R. H. J., Kelly, P. M., & Muddle, B. C. (2004). Transformation Toughening in Zirconia-Containing Ceramics. Journal of the American Ceramic Society, 83(3), 461-487. doi:10.1111/j.1151-2916.2000.tb01221.x

Basu, B., Vleugels, J., & Biest, O. V. D. (2004). Transformation behaviour of tetragonal zirconia: role of dopant content and distribution. Materials Science and Engineering: A, 366(2), 338-347. doi:10.1016/j.msea.2003.08.063

Piconi, C., Burger, W., Richter, H. G., Cittadini, A., Maccauro, G., Covacci, V., … Marmo, E. (1998). Y-TZP ceramics for artificial joint replacements. Biomaterials, 19(16), 1489-1494. doi:10.1016/s0142-9612(98)00064-7

Chevalier, J. (2006). What future for zirconia as a biomaterial? Biomaterials, 27(4), 535-543. doi:10.1016/j.biomaterials.2005.07.034

Jiménez-Piqué, E., Ramos, A., Muñoz-Tabares, J. A., Hatton, A., Soldera, F., Mücklich, F., & Anglada, M. (2012). Focused ion beam tomography of zirconia degraded under hydrothermal conditions. Journal of the European Ceramic Society, 32(10), 2129-2136. doi:10.1016/j.jeurceramsoc.2012.02.011

Muñoz-Tabares, J. A., Jiménez-Piqué, E., & Anglada, M. (2011). Subsurface evaluation of hydrothermal degradation of zirconia. Acta Materialia, 59(2), 473-484. doi:10.1016/j.actamat.2010.09.047

Masonis, J. L., Bourne, R. B., Ries, M. D., McCalden, R. W., Salehi, A., & Kelman, D. C. (2004). Zirconia femoral head fractures. The Journal of Arthroplasty, 19(7), 898-905. doi:10.1016/j.arth.2004.02.045

Chevalier, J., Gremillard, L., Virkar, A. V., & Clarke, D. R. (2009). The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. Journal of the American Ceramic Society, 92(9), 1901-1920. doi:10.1111/j.1551-2916.2009.03278.x

Lange, F. F. (1982). Transformation toughening. Journal of Materials Science, 17(1), 225-234. doi:10.1007/bf00809057

Evans, A. G., Burlingame, N., Drory, M., & Kriven, W. M. (1981). Martensitic transformations in zirconia—particle size effects and toughening. Acta Metallurgica, 29(2), 447-456. doi:10.1016/0001-6160(81)90170-x

Shukla, S., & Seal, S. (2005). Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. International Materials Reviews, 50(1), 45-64. doi:10.1179/174328005x14267

Mayo, M. J. (1996). Processing of nanocrystalline ceramics from ultrafine particles. International Materials Reviews, 41(3), 85-115. doi:10.1179/095066096790326039

Meyers, M. A., Mishra, A., & Benson, D. J. (2006). Mechanical properties of nanocrystalline materials. Progress in Materials Science, 51(4), 427-556. doi:10.1016/j.pmatsci.2005.08.003

Binner, J., & Vaidhyanathan, B. (2008). Processing of bulk nanostructured ceramics. Journal of the European Ceramic Society, 28(7), 1329-1339. doi:10.1016/j.jeurceramsoc.2007.12.024

Yang, D., Raj, R., & Conrad, H. (2010). Enhanced Sintering Rate of Zirconia (3Y-TZP) Through the Effect of a Weak dc Electric Field on Grain Growth. Journal of the American Ceramic Society, 93(10), 2935-2937. doi:10.1111/j.1551-2916.2010.03905.x

Langer, J., Hoffmann, M. J., & Guillon, O. (2010). Electric Field-Assisted Sintering in Comparison with the Hot Pressing of Yttria-Stabilized Zirconia. Journal of the American Ceramic Society, 94(1), 24-31. doi:10.1111/j.1551-2916.2010.04016.x

Laberty-Robert, C., Ansart, F., Deloget, C., Gaudon, M., & Rousset, A. (2003). Dense yttria stabilized zirconia: sintering and microstructure. Ceramics International, 29(2), 151-158. doi:10.1016/s0272-8842(02)00099-8

Wang, X.-H., Chen, P.-L., & Chen, I.-W. (2006). Two-Step Sintering of Ceramics with Constant Grain-Size, I. Y2O3. Journal of the American Ceramic Society, 89(2), 431-437. doi:10.1111/j.1551-2916.2005.00763.x

Binner, J., Annapoorani, K., Paul, A., Santacruz, I., & Vaidhyanathan, B. (2008). Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering. Journal of the European Ceramic Society, 28(5), 973-977. doi:10.1016/j.jeurceramsoc.2007.09.002

Curtin, W. A., & Sheldon, B. W. (2004). CNT-reinforced ceramics and metals. Materials Today, 7(11), 44-49. doi:10.1016/s1369-7021(04)00508-5

Garmendia, N., Santacruz, I., Moreno, R., & Obieta, I. (2010). Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing. Journal of Materials Science: Materials in Medicine, 21(5), 1445-1451. doi:10.1007/s10856-010-4023-7

Vasylkiv, O., & Sakka, Y. (2001). Synthesis and Colloidal Processing of Zirconia Nanopowder. Journal of the American Ceramic Society, 84(11), 2489-2494. doi:10.1111/j.1151-2916.2001.tb01041.x

Santacruz, I., Anapoorani, K., & Binner, J. (2008). Preparation of High Solids Content Nanozirconia Suspensions. Journal of the American Ceramic Society, 91(2), 398-405. doi:10.1111/j.1551-2916.2007.02164.x

Raghupathy, B. P. C., & Binner, J. G. P. (2010). Spray Granulation of Nanometric Zirconia Particles. Journal of the American Ceramic Society, 94(1), 42-48. doi:10.1111/j.1551-2916.2010.04019.x

KOBAYASHI, K., KUWAJIMA, H., & MASAKI, T. (1981). Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics, 3-4, 489-493. doi:10.1016/0167-2738(81)90138-7

SATO, T., & SHIMADA, M. (1985). Transformation of Yttria-Doped Tetragonal ZrO2 Polycrystals by Annealing in Water. Journal of the American Ceramic Society, 68(6), 356-356. doi:10.1111/j.1151-2916.1985.tb15239.x

Guicciardi, S., Shimozono, T., & Pezzotti, G. (2006). Nanoindentation Characterization of Sub-Micrometric Y-TZP Ceramics. Advanced Engineering Materials, 8(10), 994-997. doi:10.1002/adem.200600148

Muñoz-Tabares, J. A., & Anglada, M. (2012). Hydrothermal degradation of ground 3Y-TZP. Journal of the European Ceramic Society, 32(2), 325-333. doi:10.1016/j.jeurceramsoc.2011.08.029

Paul, A., Vaidhyanathan, B., & Binner, J. G. P. (2011). Hydrothermal Aging Behavior of Nanocrystalline Y-TZP Ceramics. Journal of the American Ceramic Society, 94(7), 2146-2152. doi:10.1111/j.1551-2916.2010.04341.x

Gaillard, Y., Anglada, M., & Jiménez-Piqué, E. (2009). Nanoindentation of yttria-doped zirconia: Effect of crystallographic structure on deformation mechanisms. Journal of Materials Research, 24(3), 719-727. doi:10.1557/jmr.2009.0091

Cattani-Lorente, M., Scherrer, S. S., Ammann, P., Jobin, M., & Wiskott, H. W. A. (2011). Low temperature degradation of a Y-TZP dental ceramic. Acta Biomaterialia, 7(2), 858-865. doi:10.1016/j.actbio.2010.09.020

Gaillard, Y., Jiménez-Piqué, E., Soldera, F., Mücklich, F., & Anglada, M. (2008). Quantification of hydrothermal degradation in zirconia by nanoindentation. Acta Materialia, 56(16), 4206-4216. doi:10.1016/j.actamat.2008.04.050

Chintapalli, R., Mestra, A., García Marro, F., Yan, H., Reece, M., & Anglada, M. (2010). Stability of Nanocrystalline Spark Plasma Sintered 3Y-TZP. Materials, 3(2), 800-814. doi:10.3390/ma3020800

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem