- -

Enhanced hydrothermal resistance of Y-TZP ceramics through colloidal processing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced hydrothermal resistance of Y-TZP ceramics through colloidal processing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rayón Encinas, Emilio es_ES
dc.contributor.author Moreno, R. es_ES
dc.contributor.author Alcazar, C. es_ES
dc.contributor.author Salvador Moya, Mª Dolores es_ES
dc.contributor.author Manjón Herrera, Francisco Javier es_ES
dc.contributor.author Jimenez-Pique, E. es_ES
dc.contributor.author Llanes, L. es_ES
dc.date.accessioned 2015-12-17T13:06:08Z
dc.date.available 2015-12-17T13:06:08Z
dc.date.issued 2013-04
dc.identifier.issn 0002-7820
dc.identifier.uri http://hdl.handle.net/10251/58957
dc.description.abstract Two commercial zirconia powders with 3mol% of yttria (TZ3YE and TZ3YS, labeled as ZE and ZS, respectively) supplied by Tosoh (Japan) were used for this study. Maximum colloidal stability for ZE was achieved by dispersing the powders in a mixture of water/ethanol of 90:10 (wt/wt) using a sonication probe. The rheological behavior of the suspensions was optimized in terms of solids content ranging from 20 to 33vol% and sonication time (06min), the best results being obtained after 2min. ZS samples were prepared to a solids loading of 30vol% in water dispersing with 2min-sonication. Samples obtained by slip casting in plaster molds were used for dynamic sintering studies, and fully dense and nanostructured specimens were obtained at temperatures of 1300 degrees C1350 degrees C (ZE samples) and 1400 degrees C per 2h (ZS samples). The Hardness (H) and Young's Modulus (E) properties of the specimens were studied by nanoindentation technique giving 17 and 250GPa mean values for H and E, respectively. The specimens were then forced to a low-temperature degradation (LTD) treatment at 130 degrees C for 240h in steps of 60h. Raman spectroscopy and nanoindentation results of hydrothermally treated samples showed the absence of transformation from tetragonal to monoclinic phase until 180h whereas the mechanical properties maintained constant even at the sample surface. After 240h of LTD, the monoclinic phase was detected on all specimens by Raman peaks centered at 180, 191, and 383cm1. The nanoindentation study revealed an important loss of mechanical features reaching 10 and 175GPa for H and E, respectively. In the case of the ZS specimens, no monoclinic phase is detected after 240h of LTD treatment and no decay of E or H is detected. The free defect microstructure reached for the ZS specimen revealed a higher hydrothermal resistance so that it is concluded that the excellent behavior against thermal degradation is possible due to the large uniformity obtained by colloidal processing rather than the particle size of the starting powders. es_ES
dc.description.sponsorship This work has been supported by Spanish Ministry of Science and Innovation (Projects MAT2009-14144-C03-02, MAT2009-14369-C02-01, and MAT2008-03398). Authors thank Prof. M. Anglada for helpful comments and discussion. R Moreno thanks the Universidad Politecnica de Valencia for the concession of a grant in the frame of its Program of Support to R+D (PAID-02-11, R-1752). We also wish to acknowledge Rut Benavente for her excellent technical support. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of the American Ceramic Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mechanical-properties es_ES
dc.subject Electric field es_ES
dc.subject Zirconia es_ES
dc.subject Transformation es_ES
dc.subject Nanoindentation es_ES
dc.subject 3Y-TZP es_ES
dc.subject Size es_ES
dc.subject Degradation es_ES
dc.subject Behavior es_ES
dc.subject Future es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Enhanced hydrothermal resistance of Y-TZP ceramics through colloidal processing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/jace.12225
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2008-03398/ES/ANALISIS MEDIANTE TOMOGRAFIA ELECTRONICA DEL DAÑO POR ARENADO, ENVEJECIMIENTO Y FATIGA DE CONTACTO EN ESTRUCTURAS LAMINARES DE CERAMICAS DENTALES/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-02-11-1752/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14144-C03-02/ES/Evaluacion De Propiedades De Nuevos Recubrimientos Nanoestructurados Obtenidos Por Proyeccion Por Plasma Atmosferico A Partir De Disoluciones Y Suspensiones Concentradas De Nanoparticulas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14369-C02-01/ES/Ensamblaje De Materiales Nanoestructurados Mediante Procesamiento Coloidal Y Laser Para Aplicaciones Fotonicas Y Estructurales/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Rayón Encinas, E.; Moreno, R.; Alcazar, C.; Salvador Moya, MD.; Manjón Herrera, FJ.; Jimenez-Pique, E.; Llanes, L. (2013). Enhanced hydrothermal resistance of Y-TZP ceramics through colloidal processing. Journal of the American Ceramic Society. 96(4):1070-1076. https://doi.org/10.1111/jace.12225 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/jace.12225 es_ES
dc.description.upvformatpinicio 1070 es_ES
dc.description.upvformatpfin 1076 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 96 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 255728
dc.identifier.eissn 1551-2916
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Basu, B., Vleugels, J., & Biest, O. V. der. (2004). Toughness tailoring of yttria-doped zirconia ceramics. Materials Science and Engineering: A, 380(1-2), 215-221. doi:10.1016/j.msea.2004.03.065 es_ES
dc.description.references Evans, A. G. (1990). Perspective on the Development of High-Toughness Ceramics. Journal of the American Ceramic Society, 73(2), 187-206. doi:10.1111/j.1151-2916.1990.tb06493.x es_ES
dc.description.references Aza, A. H., Chevalier, J., Fantozzi, G., Schehl, M., & Torrecillas, R. (2003). Slow-Crack-Growth Behavior of Zirconia-Toughened Alumina Ceramics Processed by Different Methods. Journal of the American Ceramic Society, 86(1), 115-120. doi:10.1111/j.1151-2916.2003.tb03287.x es_ES
dc.description.references Hannink, R. H. J., Kelly, P. M., & Muddle, B. C. (2004). Transformation Toughening in Zirconia-Containing Ceramics. Journal of the American Ceramic Society, 83(3), 461-487. doi:10.1111/j.1151-2916.2000.tb01221.x es_ES
dc.description.references Basu, B., Vleugels, J., & Biest, O. V. D. (2004). Transformation behaviour of tetragonal zirconia: role of dopant content and distribution. Materials Science and Engineering: A, 366(2), 338-347. doi:10.1016/j.msea.2003.08.063 es_ES
dc.description.references Piconi, C., Burger, W., Richter, H. G., Cittadini, A., Maccauro, G., Covacci, V., … Marmo, E. (1998). Y-TZP ceramics for artificial joint replacements. Biomaterials, 19(16), 1489-1494. doi:10.1016/s0142-9612(98)00064-7 es_ES
dc.description.references Chevalier, J. (2006). What future for zirconia as a biomaterial? Biomaterials, 27(4), 535-543. doi:10.1016/j.biomaterials.2005.07.034 es_ES
dc.description.references Jiménez-Piqué, E., Ramos, A., Muñoz-Tabares, J. A., Hatton, A., Soldera, F., Mücklich, F., & Anglada, M. (2012). Focused ion beam tomography of zirconia degraded under hydrothermal conditions. Journal of the European Ceramic Society, 32(10), 2129-2136. doi:10.1016/j.jeurceramsoc.2012.02.011 es_ES
dc.description.references Muñoz-Tabares, J. A., Jiménez-Piqué, E., & Anglada, M. (2011). Subsurface evaluation of hydrothermal degradation of zirconia. Acta Materialia, 59(2), 473-484. doi:10.1016/j.actamat.2010.09.047 es_ES
dc.description.references Masonis, J. L., Bourne, R. B., Ries, M. D., McCalden, R. W., Salehi, A., & Kelman, D. C. (2004). Zirconia femoral head fractures. The Journal of Arthroplasty, 19(7), 898-905. doi:10.1016/j.arth.2004.02.045 es_ES
dc.description.references Chevalier, J., Gremillard, L., Virkar, A. V., & Clarke, D. R. (2009). The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. Journal of the American Ceramic Society, 92(9), 1901-1920. doi:10.1111/j.1551-2916.2009.03278.x es_ES
dc.description.references Lange, F. F. (1982). Transformation toughening. Journal of Materials Science, 17(1), 225-234. doi:10.1007/bf00809057 es_ES
dc.description.references Evans, A. G., Burlingame, N., Drory, M., & Kriven, W. M. (1981). Martensitic transformations in zirconia—particle size effects and toughening. Acta Metallurgica, 29(2), 447-456. doi:10.1016/0001-6160(81)90170-x es_ES
dc.description.references Shukla, S., & Seal, S. (2005). Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. International Materials Reviews, 50(1), 45-64. doi:10.1179/174328005x14267 es_ES
dc.description.references Mayo, M. J. (1996). Processing of nanocrystalline ceramics from ultrafine particles. International Materials Reviews, 41(3), 85-115. doi:10.1179/095066096790326039 es_ES
dc.description.references Meyers, M. A., Mishra, A., & Benson, D. J. (2006). Mechanical properties of nanocrystalline materials. Progress in Materials Science, 51(4), 427-556. doi:10.1016/j.pmatsci.2005.08.003 es_ES
dc.description.references Binner, J., & Vaidhyanathan, B. (2008). Processing of bulk nanostructured ceramics. Journal of the European Ceramic Society, 28(7), 1329-1339. doi:10.1016/j.jeurceramsoc.2007.12.024 es_ES
dc.description.references Yang, D., Raj, R., & Conrad, H. (2010). Enhanced Sintering Rate of Zirconia (3Y-TZP) Through the Effect of a Weak dc Electric Field on Grain Growth. Journal of the American Ceramic Society, 93(10), 2935-2937. doi:10.1111/j.1551-2916.2010.03905.x es_ES
dc.description.references Langer, J., Hoffmann, M. J., & Guillon, O. (2010). Electric Field-Assisted Sintering in Comparison with the Hot Pressing of Yttria-Stabilized Zirconia. Journal of the American Ceramic Society, 94(1), 24-31. doi:10.1111/j.1551-2916.2010.04016.x es_ES
dc.description.references Laberty-Robert, C., Ansart, F., Deloget, C., Gaudon, M., & Rousset, A. (2003). Dense yttria stabilized zirconia: sintering and microstructure. Ceramics International, 29(2), 151-158. doi:10.1016/s0272-8842(02)00099-8 es_ES
dc.description.references Wang, X.-H., Chen, P.-L., & Chen, I.-W. (2006). Two-Step Sintering of Ceramics with Constant Grain-Size, I. Y2O3. Journal of the American Ceramic Society, 89(2), 431-437. doi:10.1111/j.1551-2916.2005.00763.x es_ES
dc.description.references Binner, J., Annapoorani, K., Paul, A., Santacruz, I., & Vaidhyanathan, B. (2008). Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering. Journal of the European Ceramic Society, 28(5), 973-977. doi:10.1016/j.jeurceramsoc.2007.09.002 es_ES
dc.description.references Curtin, W. A., & Sheldon, B. W. (2004). CNT-reinforced ceramics and metals. Materials Today, 7(11), 44-49. doi:10.1016/s1369-7021(04)00508-5 es_ES
dc.description.references Garmendia, N., Santacruz, I., Moreno, R., & Obieta, I. (2010). Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing. Journal of Materials Science: Materials in Medicine, 21(5), 1445-1451. doi:10.1007/s10856-010-4023-7 es_ES
dc.description.references Vasylkiv, O., & Sakka, Y. (2001). Synthesis and Colloidal Processing of Zirconia Nanopowder. Journal of the American Ceramic Society, 84(11), 2489-2494. doi:10.1111/j.1151-2916.2001.tb01041.x es_ES
dc.description.references Santacruz, I., Anapoorani, K., & Binner, J. (2008). Preparation of High Solids Content Nanozirconia Suspensions. Journal of the American Ceramic Society, 91(2), 398-405. doi:10.1111/j.1551-2916.2007.02164.x es_ES
dc.description.references Raghupathy, B. P. C., & Binner, J. G. P. (2010). Spray Granulation of Nanometric Zirconia Particles. Journal of the American Ceramic Society, 94(1), 42-48. doi:10.1111/j.1551-2916.2010.04019.x es_ES
dc.description.references KOBAYASHI, K., KUWAJIMA, H., & MASAKI, T. (1981). Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics, 3-4, 489-493. doi:10.1016/0167-2738(81)90138-7 es_ES
dc.description.references SATO, T., & SHIMADA, M. (1985). Transformation of Yttria-Doped Tetragonal ZrO2 Polycrystals by Annealing in Water. Journal of the American Ceramic Society, 68(6), 356-356. doi:10.1111/j.1151-2916.1985.tb15239.x es_ES
dc.description.references Guicciardi, S., Shimozono, T., & Pezzotti, G. (2006). Nanoindentation Characterization of Sub-Micrometric Y-TZP Ceramics. Advanced Engineering Materials, 8(10), 994-997. doi:10.1002/adem.200600148 es_ES
dc.description.references Muñoz-Tabares, J. A., & Anglada, M. (2012). Hydrothermal degradation of ground 3Y-TZP. Journal of the European Ceramic Society, 32(2), 325-333. doi:10.1016/j.jeurceramsoc.2011.08.029 es_ES
dc.description.references Paul, A., Vaidhyanathan, B., & Binner, J. G. P. (2011). Hydrothermal Aging Behavior of Nanocrystalline Y-TZP Ceramics. Journal of the American Ceramic Society, 94(7), 2146-2152. doi:10.1111/j.1551-2916.2010.04341.x es_ES
dc.description.references Gaillard, Y., Anglada, M., & Jiménez-Piqué, E. (2009). Nanoindentation of yttria-doped zirconia: Effect of crystallographic structure on deformation mechanisms. Journal of Materials Research, 24(3), 719-727. doi:10.1557/jmr.2009.0091 es_ES
dc.description.references Cattani-Lorente, M., Scherrer, S. S., Ammann, P., Jobin, M., & Wiskott, H. W. A. (2011). Low temperature degradation of a Y-TZP dental ceramic. Acta Biomaterialia, 7(2), 858-865. doi:10.1016/j.actbio.2010.09.020 es_ES
dc.description.references Gaillard, Y., Jiménez-Piqué, E., Soldera, F., Mücklich, F., & Anglada, M. (2008). Quantification of hydrothermal degradation in zirconia by nanoindentation. Acta Materialia, 56(16), 4206-4216. doi:10.1016/j.actamat.2008.04.050 es_ES
dc.description.references Chintapalli, R., Mestra, A., García Marro, F., Yan, H., Reece, M., & Anglada, M. (2010). Stability of Nanocrystalline Spark Plasma Sintered 3Y-TZP. Materials, 3(2), 800-814. doi:10.3390/ma3020800 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem