Mostrar el registro sencillo del ítem
dc.contributor.author | Sastre, Jorge | es_ES |
dc.contributor.author | Ibáñez González, Jacinto Javier | es_ES |
dc.contributor.author | Ruiz Martínez, Pedro Antonio | es_ES |
dc.contributor.author | Defez Candel, Emilio | es_ES |
dc.date.accessioned | 2015-12-21T10:20:21Z | |
dc.date.available | 2015-12-21T10:20:21Z | |
dc.date.issued | 2014-01 | |
dc.identifier.issn | 0020-7160 | |
dc.identifier.uri | http://hdl.handle.net/10251/59082 | |
dc.description.abstract | [EN] This work gives a new formula for the forward relative error of matrix exponential Taylor approximation and proposes new bounds for it depending on the matrix size and the Taylor approximation order, providing a new efficient scaling and squaring Taylor algorithm for the matrix exponential. A Matlab version of the new algorithm is provided and compared with Pad´e state-of-the-art algorithms obtaining higher accuracy in the majority of tests at similar or even lower cost. | es_ES |
dc.description.sponsorship | This work has been supported by the Programa de Apoyo a la Investigacion y el Desarrollo of the Universitat Politecnica de Valencia grant PAID-06-11-2020 | |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis (Routledge): STM, Behavioural Science and Public Health Titles | es_ES |
dc.relation.ispartof | International Journal of Computer Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Matrix exponential | es_ES |
dc.subject | Scaling and squaring | es_ES |
dc.subject | Taylor series | es_ES |
dc.subject | Error analysis | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Accurate and efficient matrix exponential computation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207160.2013.791392 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-2020/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Sastre, J.; Ibáñez González, JJ.; Ruiz Martínez, PA.; Defez Candel, E. (2014). Accurate and efficient matrix exponential computation. International Journal of Computer Mathematics. 91(1):97-112. https://doi.org/10.1080/00207160.2013.791392 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/00207160.2013.791392 | es_ES |
dc.description.upvformatpinicio | 97 | es_ES |
dc.description.upvformatpfin | 112 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 91 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 280161 | es_ES |
dc.identifier.eissn | 1029-0265 | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | Al-Mohy, A. H., & Higham, N. J. (2010). A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM Journal on Matrix Analysis and Applications, 31(3), 970-989. doi:10.1137/09074721x | es_ES |
dc.description.references | Arioli, M., Codenotti, B., & Fassino, C. (1996). The Padé method for computing the matrix exponential. Linear Algebra and its Applications, 240, 111-130. doi:10.1016/0024-3795(94)00190-1 | es_ES |
dc.description.references | S. Blackford and J. Dongarra,Installation guide for LAPACK, LAPACK Working Note 411, Department of Computer Science, University of Tenessee, 1999. | es_ES |
dc.description.references | Dieci, L., & Papini, A. (2000). Padé approximation for the exponential of a block triangular matrix. Linear Algebra and its Applications, 308(1-3), 183-202. doi:10.1016/s0024-3795(00)00042-2 | es_ES |
dc.description.references | Dieci, L., & Papini, A. (2001). Numerical Algorithms, 28(1/4), 137-150. doi:10.1023/a:1014071202885 | es_ES |
dc.description.references | Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2), 201-213. doi:10.1007/s101070100263 | es_ES |
dc.description.references | C. Fassino,Computation of matrix functions, Ph.D. thesis TD-7/93, Università di Pisa, Genova, 1993. | es_ES |
dc.description.references | Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms. doi:10.1137/1.9780898718027 | es_ES |
dc.description.references | Higham, N. J. (2005). The Scaling and Squaring Method for the Matrix Exponential Revisited. SIAM Journal on Matrix Analysis and Applications, 26(4), 1179-1193. doi:10.1137/04061101x | es_ES |
dc.description.references | Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778 | es_ES |
dc.description.references | Higham, N. J., & Tisseur, F. (2000). A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra. SIAM Journal on Matrix Analysis and Applications, 21(4), 1185-1201. doi:10.1137/s0895479899356080 | es_ES |
dc.description.references | Moler, C., & Van Loan, C. (2003). Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Review, 45(1), 3-49. doi:10.1137/s00361445024180 | es_ES |
dc.description.references | Paterson, M. S., & Stockmeyer, L. J. (1973). On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials. SIAM Journal on Computing, 2(1), 60-66. doi:10.1137/0202007 | es_ES |
dc.description.references | Sastre, J., Ibáñez, J., Defez, E., & Ruiz, P. (2011). Accurate matrix exponential computation to solve coupled differential models in engineering. Mathematical and Computer Modelling, 54(7-8), 1835-1840. doi:10.1016/j.mcm.2010.12.049 | es_ES |