- -

Accurate and efficient matrix exponential computation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Accurate and efficient matrix exponential computation

Mostrar el registro completo del ítem

Sastre, J.; Ibáñez González, JJ.; Ruiz Martínez, PA.; Defez Candel, E. (2014). Accurate and efficient matrix exponential computation. International Journal of Computer Mathematics. 91(1):97-112. https://doi.org/10.1080/00207160.2013.791392

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59082

Ficheros en el ítem

Metadatos del ítem

Título: Accurate and efficient matrix exponential computation
Autor: Sastre, Jorge Ibáñez González, Jacinto Javier Ruiz Martínez, Pedro Antonio Defez Candel, Emilio
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] This work gives a new formula for the forward relative error of matrix exponential Taylor approximation and proposes new bounds for it depending on the matrix size and the Taylor approximation order, providing a new ...[+]
Palabras clave: Matrix exponential , Scaling and squaring , Taylor series , Error analysis
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Computer Mathematics. (issn: 0020-7160 ) (eissn: 1029-0265 )
DOI: 10.1080/00207160.2013.791392
Editorial:
Taylor & Francis (Routledge): STM, Behavioural Science and Public Health Titles
Versión del editor: http://dx.doi.org/10.1080/00207160.2013.791392
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-11-2020/
Agradecimientos:
This work has been supported by the Programa de Apoyo a la Investigacion y el Desarrollo of the Universitat Politecnica de Valencia grant PAID-06-11-2020
Tipo: Artículo

References

Al-Mohy, A. H., & Higham, N. J. (2010). A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM Journal on Matrix Analysis and Applications, 31(3), 970-989. doi:10.1137/09074721x

Arioli, M., Codenotti, B., & Fassino, C. (1996). The Padé method for computing the matrix exponential. Linear Algebra and its Applications, 240, 111-130. doi:10.1016/0024-3795(94)00190-1

S. Blackford and J. Dongarra,Installation guide for LAPACK, LAPACK Working Note 411, Department of Computer Science, University of Tenessee, 1999. [+]
Al-Mohy, A. H., & Higham, N. J. (2010). A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM Journal on Matrix Analysis and Applications, 31(3), 970-989. doi:10.1137/09074721x

Arioli, M., Codenotti, B., & Fassino, C. (1996). The Padé method for computing the matrix exponential. Linear Algebra and its Applications, 240, 111-130. doi:10.1016/0024-3795(94)00190-1

S. Blackford and J. Dongarra,Installation guide for LAPACK, LAPACK Working Note 411, Department of Computer Science, University of Tenessee, 1999.

Dieci, L., & Papini, A. (2000). Padé approximation for the exponential of a block triangular matrix. Linear Algebra and its Applications, 308(1-3), 183-202. doi:10.1016/s0024-3795(00)00042-2

Dieci, L., & Papini, A. (2001). Numerical Algorithms, 28(1/4), 137-150. doi:10.1023/a:1014071202885

Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2), 201-213. doi:10.1007/s101070100263

C. Fassino,Computation of matrix functions, Ph.D. thesis TD-7/93, Università di Pisa, Genova, 1993.

Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms. doi:10.1137/1.9780898718027

Higham, N. J. (2005). The Scaling and Squaring Method for the Matrix Exponential Revisited. SIAM Journal on Matrix Analysis and Applications, 26(4), 1179-1193. doi:10.1137/04061101x

Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778

Higham, N. J., & Tisseur, F. (2000). A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra. SIAM Journal on Matrix Analysis and Applications, 21(4), 1185-1201. doi:10.1137/s0895479899356080

Moler, C., & Van Loan, C. (2003). Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Review, 45(1), 3-49. doi:10.1137/s00361445024180

Paterson, M. S., & Stockmeyer, L. J. (1973). On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials. SIAM Journal on Computing, 2(1), 60-66. doi:10.1137/0202007

Sastre, J., Ibáñez, J., Defez, E., & Ruiz, P. (2011). Accurate matrix exponential computation to solve coupled differential models in engineering. Mathematical and Computer Modelling, 54(7-8), 1835-1840. doi:10.1016/j.mcm.2010.12.049

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem