- -

Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications

Show full item record

Gracia Salgado, R.; Garcia Chocano, VM.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2013). Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications. Physical Review B. 88(22):1-12. doi:10.1103/PhysRevB.88.224305

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59085

Files in this item

Item Metadata

Title: Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications
Author: Graciá Salgado, Rogelio García Chocano, Víctor Manuel Torrent Martí, Daniel Sánchez-Dehesa Moreno-Cid, José
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
We report the design and the characterization of artificial structures made of periodical distributions of structured cylindrical scatterers embedded in a two-dimensional (2D) waveguide. For certain values of their geometrical ...[+]
Subjects: Acoustics , Metamaterial , Negative behavior , Near zero density , Surface waves , Tunneling
Copyrigths: Cerrado
Source:
Physical Review B. (issn: 1098-0121 ) (eissn: 1550-235X )
DOI: 10.1103/PhysRevB.88.224305
Publisher:
American Physical Society
Publisher version: http://dx.doi.org/10.1103/PhysRevB.88.224305
Thanks:
Work partially supported by the Spanish Ministry of Economy and Competitivity with References No. TEC 2010-19751 and No. CSD2008-00066 (Consolider Program). The authors also acknowledge support from the U.S. Office of Naval ...[+]
Type: Artículo

References

Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic Metamaterials. MRS Bulletin, 33(10), 931-934. doi:10.1557/mrs2008.202

Craster, R. V., & Guenneau, S. (Eds.). (2013). Acoustic Metamaterials. Springer Series in Materials Science. doi:10.1007/978-94-007-4813-2

Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561 [+]
Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic Metamaterials. MRS Bulletin, 33(10), 931-934. doi:10.1557/mrs2008.202

Craster, R. V., & Guenneau, S. (Eds.). (2013). Acoustic Metamaterials. Springer Series in Materials Science. doi:10.1007/978-94-007-4813-2

Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561

Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2010). Sound focusing by gradient index sonic lenses. Applied Physics Letters, 97(10), 104103. doi:10.1063/1.3488349

Martin, T. P., Nicholas, M., Orris, G. J., Cai, L.-W., Torrent, D., & Sánchez-Dehesa, J. (2010). Sonic gradient index lens for aqueous applications. Applied Physics Letters, 97(11), 113503. doi:10.1063/1.3489373

Spiousas, I., Torrent, D., & Sánchez-Dehesa, J. (2011). Experimental realization of broadband tunable resonators based on anisotropic metafluids. Applied Physics Letters, 98(24), 244102. doi:10.1063/1.3599849

Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301

Torrent, D., & Sánchez-Dehesa, J. (2010). Acoustic resonances in two-dimensional radial sonic crystal shells. New Journal of Physics, 12(7), 073034. doi:10.1088/1367-2630/12/7/073034

Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045

Torrent, D., & Sánchez-Dehesa, J. (2008). Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics, 10(6), 063015. doi:10.1088/1367-2630/10/6/063015

Cummer, S. A., Rahm, M., & Schurig, D. (2008). Material parameters and vector scaling in transformation acoustics. New Journal of Physics, 10(11), 115025. doi:10.1088/1367-2630/10/11/115025

Chen, H., & Chan, C. T. (2010). Acoustic cloaking and transformation acoustics. Journal of Physics D: Applied Physics, 43(11), 113001. doi:10.1088/0022-3727/43/11/113001

García-Meca, C., Carloni, S., Barceló, C., Jannes, G., Sánchez-Dehesa, J., & Martínez, A. (2013). Analogue Transformations in Physics and their Application to Acoustics. Scientific Reports, 3(1). doi:10.1038/srep02009

Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644

Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2009). Acoustic metamaterial with negative modulus. Journal of Physics: Condensed Matter, 21(17), 175704. doi:10.1088/0953-8984/21/17/175704

Fey, J., & Robertson, W. M. (2011). Compact acoustic bandgap material based on a subwavelength collection of detuned Helmholtz resonators. Journal of Applied Physics, 109(11), 114903. doi:10.1063/1.3595677

García-Chocano, V. M., Graciá-Salgado, R., Torrent, D., Cervera, F., & Sánchez-Dehesa, J. (2012). Quasi-two-dimensional acoustic metamaterial with negative bulk modulus. Physical Review B, 85(18). doi:10.1103/physrevb.85.184102

Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734

Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301

Yao, S., Zhou, X., & Hu, G. (2010). Investigation of the negative-mass behaviors occurring below a cut-off frequency. New Journal of Physics, 12(10), 103025. doi:10.1088/1367-2630/12/10/103025

Park, C. M., Park, J. J., Lee, S. H., Seo, Y. M., Kim, C. K., & Lee, S. H. (2011). Amplification of Acoustic Evanescent Waves Using Metamaterial Slabs. Physical Review Letters, 107(19). doi:10.1103/physrevlett.107.194301

Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5). doi:10.1103/physreve.70.055602

Ding, Y., Liu, Z., Qiu, C., & Shi, J. (2007). Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density. Physical Review Letters, 99(9). doi:10.1103/physrevlett.99.093904

Cheng, Y., Xu, J. Y., & Liu, X. J. (2008). One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Physical Review B, 77(4). doi:10.1103/physrevb.77.045134

Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301

Fok, L., & Zhang, X. (2011). Negative acoustic index metamaterial. Physical Review B, 83(21). doi:10.1103/physrevb.83.214304

Liang, Z., & Li, J. (2012). Extreme Acoustic Metamaterial by Coiling Up Space. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.114301

Xie, Y., Popa, B.-I., Zigoneanu, L., & Cummer, S. A. (2013). Measurement of a Broadband Negative Index with Space-Coiling Acoustic Metamaterials. Physical Review Letters, 110(17). doi:10.1103/physrevlett.110.175501

Graciá-Salgado, R., Torrent, D., & Sánchez-Dehesa, J. (2012). Double-negative acoustic metamaterials based on quasi-two-dimensional fluid-like shells. New Journal of Physics, 14(10), 103052. doi:10.1088/1367-2630/14/10/103052

Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302

Torrent, D., & Sánchez-Dehesa, J. (2011). Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New Journal of Physics, 13(9), 093018. doi:10.1088/1367-2630/13/9/093018

Ambati, M., Fang, N., Sun, C., & Zhang, X. (2007). Surface resonant states and superlensing in acoustic metamaterials. Physical Review B, 75(19). doi:10.1103/physrevb.75.195447

Alù, A., & Engheta, N. (2005). Achieving transparency with plasmonic and metamaterial coatings. Physical Review E, 72(1). doi:10.1103/physreve.72.016623

Wu, Y., & Li, J. (2013). Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Applied Physics Letters, 102(18), 183105. doi:10.1063/1.4804201

Silveirinha, M., & Engheta, N. (2006). Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends usingε-Near-Zero Materials. Physical Review Letters, 97(15). doi:10.1103/physrevlett.97.157403

Liu, R., Cheng, Q., Hand, T., Mock, J. J., Cui, T. J., Cummer, S. A., & Smith, D. R. (2008). Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.023903

Edwards, B., Alù, A., Young, M. E., Silveirinha, M., & Engheta, N. (2008). Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide. Physical Review Letters, 100(3). doi:10.1103/physrevlett.100.033903

Alù, A., Silveirinha, M. G., Salandrino, A., & Engheta, N. (2007). Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Physical Review B, 75(15). doi:10.1103/physrevb.75.155410

Fleury, R., & Alù, A. (2013). Extraordinary Sound Transmission through Density-Near-Zero Ultranarrow Channels. Physical Review Letters, 111(5). doi:10.1103/physrevlett.111.055501

Wei, Q., Cheng, Y., & Liu, X. (2013). Acoustic total transmission and total reflection in zero-index metamaterials with defects. Applied Physics Letters, 102(17), 174104. doi:10.1063/1.4803919

Luo, J., Xu, P., Chen, H., Hou, B., Gao, L., & Lai, Y. (2012). Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials. Applied Physics Letters, 100(22), 221903. doi:10.1063/1.4723844

Edwards, B., Alù, A., Silveirinha, M. G., & Engheta, N. (2009). Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects. Journal of Applied Physics, 105(4), 044905. doi:10.1063/1.3074506

Ourir, A., Maurel, A., & Pagneux, V. (2013). Tunneling of electromagnetic energy in multiple connected leads using ϵ-near-zero materials. Optics Letters, 38(12), 2092. doi:10.1364/ol.38.002092

[-]

This item appears in the following Collection(s)

Show full item record