Mostrar el registro sencillo del ítem
dc.contributor.author | Carrera Montesinos, Javier | es_ES |
dc.contributor.author | Fernández Del Carmen, María Asunción | es_ES |
dc.contributor.author | Fernández Muñoz, Rafael | es_ES |
dc.contributor.author | Rambla Nebot, Jose Luis | es_ES |
dc.contributor.author | Pons Puig, Clara | es_ES |
dc.contributor.author | Jaramillo Rosales, Alfonso | es_ES |
dc.contributor.author | Elena Fito, Santiago Fco | es_ES |
dc.contributor.author | Granell Richart, Antonio | es_ES |
dc.date.accessioned | 2015-12-23T09:45:18Z | |
dc.date.available | 2015-12-23T09:45:18Z | |
dc.date.issued | 2012-06-07 | |
dc.identifier.issn | 1553-734X | |
dc.identifier.uri | http://hdl.handle.net/10251/59169 | |
dc.description.abstract | [EN] Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites. | es_ES |
dc.description.sponsorship | This work was supported by grant TIN2006-12860 from the Spanish Ministerio de Ciencia e Innovacion), the Structural Funds of the European Regional Development Fund (ERDF), FP7-ICT-043338 (BACTOCOM), the FP7-ICT-265505 (CADMAD), the ATIGE-Genopole, and the Fondation pour la Recherche Medicale grants to AJ, and by grant BFU2009-06993 from the Spanish Ministerio de Ciencia e Innovacion to SFE and ESPSOL Fundacion Genoma Espana and EUSOL European Commission Contract number: FOOD-CT-2006-016214, to AG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | |
dc.language | Español | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS Computational Biology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Lean manufacturing | es_ES |
dc.subject | Transcriptomic data | es_ES |
dc.subject | Metabolomic data | es_ES |
dc.subject | Phenomic data | es_ES |
dc.title | Fine-tuning tomato agronomic properties by computational genome redesign | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pcbi.1002528 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/043338/EU/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//TIN2006-12860/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/265505/EU/Paving the Way for Future Emerging DNA-based Technologies: Computer-Aided Design and Manufacturing of DNA libraries/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/16214/EU/High Quality Solanaceous Crops for Consumers, Processors and Producers by Exploration of Natural Biodiversity/EU-SOL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Carrera Montesinos, J.; Fernández Del Carmen, MA.; Fernández Muñoz, R.; Rambla Nebot, JL.; Pons Puig, C.; Jaramillo Rosales, A.; Elena Fito, SF.... (2012). Fine-tuning tomato agronomic properties by computational genome redesign. PLoS Computational Biology. 8(6):1002528-1002528. https://doi.org/10.1371/journal.pcbi.1002528 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1371/journal.pcbi.1002528 | es_ES |
dc.description.upvformatpinicio | 1002528 | es_ES |
dc.description.upvformatpfin | 1002528 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 232198 | es_ES |
dc.identifier.eissn | 1553-7358 | |
dc.identifier.pmid | 22685389 | en_EN |
dc.identifier.pmcid | PMC3369923 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449-453. doi:10.1038/nature04342 | es_ES |
dc.description.references | Knight, T. F. (2005). Engineering novel life. Molecular Systems Biology, 1(1). doi:10.1038/msb4100028 | es_ES |
dc.description.references | Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2(1). doi:10.1038/msb4100073 | es_ES |
dc.description.references | Feist, A. M., Herrgård, M. J., Thiele, I., Reed, J. L., & Palsson, B. Ø. (2008). Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology, 7(2), 129-143. doi:10.1038/nrmicro1949 | es_ES |
dc.description.references | Di Bernardo, D., Thompson, M. J., Gardner, T. S., Chobot, S. E., Eastwood, E. L., Wojtovich, A. P., … Collins, J. J. (2005). Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nature Biotechnology, 23(3), 377-383. doi:10.1038/nbt1075 | es_ES |
dc.description.references | Carrera, J., Rodrigo, G., & Jaramillo, A. (2009). Model-based redesign of global transcription regulation. Nucleic Acids Research, 37(5), e38-e38. doi:10.1093/nar/gkp022 | es_ES |
dc.description.references | Carrera, J., Rodrigo, G., Jaramillo, A., & Elena, S. F. (2009). Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biology, 10(9), R96. doi:10.1186/gb-2009-10-9-r96 | es_ES |
dc.description.references | Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., … Gardner, T. S. (2007). Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biology, 5(1), e8. doi:10.1371/journal.pbio.0050008 | es_ES |
dc.description.references | Bonneau, R., Facciotti, M. T., Reiss, D. J., Schmid, A. K., Pan, M., Kaur, A., … Baliga, N. S. (2007). A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell. Cell, 131(7), 1354-1365. doi:10.1016/j.cell.2007.10.053 | es_ES |
dc.description.references | Tagkopoulos, I., Liu, Y.-C., & Tavazoie, S. (2008). Predictive Behavior Within Microbial Genetic Networks. Science, 320(5881), 1313-1317. doi:10.1126/science.1154456 | es_ES |
dc.description.references | Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J., & Palsson, B. O. (2004). Integrating high-throughput and computational data elucidates bacterial networks. Nature, 429(6987), 92-96. doi:10.1038/nature02456 | es_ES |
dc.description.references | Endy, D., & Brent, R. (2001). Modelling cellular behaviour. Nature, 409(6818), 391-395. doi:10.1038/35053181 | es_ES |
dc.description.references | Joyce, A. R., & Palsson, B. Ø. (2006). The model organism as a system: integrating «omics» data sets. Nature Reviews Molecular Cell Biology, 7(3), 198-210. doi:10.1038/nrm1857 | es_ES |
dc.description.references | Burgard, A. P., Pharkya, P., & Maranas, C. D. (2003). Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering, 84(6), 647-657. doi:10.1002/bit.10803 | es_ES |
dc.description.references | Segre, D., Vitkup, D., & Church, G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences, 99(23), 15112-15117. doi:10.1073/pnas.232349399 | es_ES |
dc.description.references | Rocha, M., Maia, P., Mendes, R., Pinto, J. P., Ferreira, E. C., Nielsen, J., … Rocha, I. (2008). Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-499 | es_ES |
dc.description.references | Meyer, R. C., Steinfath, M., Lisec, J., Becher, M., Witucka-Wall, H., Torjek, O., … Altmann, T. (2007). The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 104(11), 4759-4764. doi:10.1073/pnas.0609709104 | es_ES |
dc.description.references | Mounet, F., Moing, A., Garcia, V., Petit, J., Maucourt, M., Deborde, C., … Lemaire-Chamley, M. (2009). Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development. Plant Physiology, 149(3), 1505-1528. doi:10.1104/pp.108.133967 | es_ES |
dc.description.references | Garcia, V., Stevens, R., Gil, L., Gilbert, L., Gest, N., Petit, J., … Rothan, C. (2009). An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. Comptes Rendus Biologies, 332(11), 1007-1021. doi:10.1016/j.crvi.2009.09.013 | es_ES |
dc.description.references | Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., … Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24(4), 447-454. doi:10.1038/nbt1192 | es_ES |
dc.description.references | Osorio, S., Alba, R., Damasceno, C. M. B., Lopez-Casado, G., Lohse, M., Zanor, M. I., … Fernie, A. R. (2011). Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (nor, rin) and Ethylene Receptor (Nr) Mutants Reveals Novel Regulatory Interactions. Plant Physiology, 157(1), 405-425. doi:10.1104/pp.111.175463 | es_ES |
dc.description.references | Rohrmann, J., Tohge, T., Alba, R., Osorio, S., Caldana, C., McQuinn, R., … Fernie, A. R. (2011). Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. The Plant Journal, 68(6), 999-1013. doi:10.1111/j.1365-313x.2011.04750.x | es_ES |
dc.description.references | Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., … Lander, E. S. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449(7164), 913-918. doi:10.1038/nature06250 | es_ES |
dc.description.references | Daetwyler, H. D., Villanueva, B., Bijma, P., & Woolliams, J. A. (2007). Inbreeding in genome-wide selection. Journal of Animal Breeding and Genetics, 124(6), 369-376. doi:10.1111/j.1439-0388.2007.00693.x | es_ES |
dc.description.references | Martin-Magniette, M.-L., Aubert, J., Bar-Hen, A., Elftieh, S., Magniette, F., Renou, J.-P., & Daudin, J.-J. (2008). Normalization for triple-target microarray experiments. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-216 | es_ES |
dc.description.references | Riedelsheimer, C., Czedik-Eysenberg, A., Grieder, C., Lisec, J., Technow, F., Sulpice, R., … Melchinger, A. E. (2012). Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nature Genetics, 44(2), 217-220. doi:10.1038/ng.1033 | es_ES |
dc.description.references | Shah, R., & Ward, P. T. (2002). Lean manufacturing: context, practice bundles, and performance. Journal of Operations Management, 21(2), 129-149. doi:10.1016/s0272-6963(02)00108-0 | es_ES |
dc.description.references | Rosati, C., Diretto, G., & Giuliano, G. (2009). Biosynthesis and Engineering of Carotenoids and Apocarotenoids in Plants: State of the Art and Future Prospects. Biotechnology and Genetic Engineering Reviews, 26(1), 139-162. doi:10.5661/bger-26-139 | es_ES |
dc.description.references | E., F., Y., L., L., C.-G., A., G., M., S., T., P., … D., Z. (2002). Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Molecular Genetics and Genomics, 266(5), 821-826. doi:10.1007/s00438-001-0599-4 | es_ES |
dc.description.references | Cong, B., Barrero, L. S., & Tanksley, S. D. (2008). Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genetics, 40(6), 800-804. doi:10.1038/ng.144 | es_ES |
dc.description.references | Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., … Bouzayen, M. (2009). Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling. The Plant Cell, 21(5), 1428-1452. doi:10.1105/tpc.108.060830 | es_ES |
dc.description.references | Klee, H. J. (2010). Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44-56. doi:10.1111/j.1469-8137.2010.03281.x | es_ES |
dc.description.references | Minoia, S., Petrozza, A., D’Onofrio, O., Piron, F., Mosca, G., Sozio, G., … Carriero, F. (2010). A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Research Notes, 3(1). doi:10.1186/1756-0500-3-69 | es_ES |
dc.description.references | Bogdanove, A. J., & Voytas, D. F. (2011). TAL Effectors: Customizable Proteins for DNA Targeting. Science, 333(6051), 1843-1846. doi:10.1126/science.1204094 | es_ES |
dc.description.references | Hetherington, S. E., Smillie, R. M., & Davies, W. J. (1998). Photosynthetic activities of vegetative and fruiting tissues of tomato. Journal of Experimental Botany, 49(324), 1173-1181. doi:10.1093/jxb/49.324.1173 | es_ES |
dc.description.references | Fridman, E. (2004). Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions. Science, 305(5691), 1786-1789. doi:10.1126/science.1101666 | es_ES |
dc.description.references | Agius, F., González-Lamothe, R., Caballero, J. L., Muñoz-Blanco, J., Botella, M. A., & Valpuesta, V. (2003). Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology, 21(2), 177-181. doi:10.1038/nbt777 | es_ES |
dc.description.references | Cahoon, E. B., Hall, S. E., Ripp, K. G., Ganzke, T. S., Hitz, W. D., & Coughlan, S. J. (2003). Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature Biotechnology, 21(9), 1082-1087. doi:10.1038/nbt853 | es_ES |
dc.description.references | Ye, X. (2000). Engineering the Provitamin A (-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science, 287(5451), 303-305. doi:10.1126/science.287.5451.303 | es_ES |
dc.description.references | Aharoni, A., & Galili, G. (2011). Metabolic engineering of the plant primary–secondary metabolism interface. Current Opinion in Biotechnology, 22(2), 239-244. doi:10.1016/j.copbio.2010.11.004 | es_ES |
dc.description.references | Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4 | es_ES |
dc.description.references | Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086 | es_ES |
dc.description.references | Lytovchenko, A., Eickmeier, I., Pons, C., Osorio, S., Szecowka, M., Lehmberg, K., … Fernie, A. R. (2011). Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening But Plays a Considerable Role in Seed Development. Plant Physiology, 157(4), 1650-1663. doi:10.1104/pp.111.186874 | es_ES |