- -

Fine-tuning tomato agronomic properties by computational genome redesign

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fine-tuning tomato agronomic properties by computational genome redesign

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carrera Montesinos, Javier es_ES
dc.contributor.author Fernández Del Carmen, María Asunción es_ES
dc.contributor.author Fernández Muñoz, Rafael es_ES
dc.contributor.author Rambla Nebot, Jose Luis es_ES
dc.contributor.author Pons Puig, Clara es_ES
dc.contributor.author Jaramillo Rosales, Alfonso es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.date.accessioned 2015-12-23T09:45:18Z
dc.date.available 2015-12-23T09:45:18Z
dc.date.issued 2012-06-07
dc.identifier.issn 1553-734X
dc.identifier.uri http://hdl.handle.net/10251/59169
dc.description.abstract [EN] Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites. es_ES
dc.description.sponsorship This work was supported by grant TIN2006-12860 from the Spanish Ministerio de Ciencia e Innovacion), the Structural Funds of the European Regional Development Fund (ERDF), FP7-ICT-043338 (BACTOCOM), the FP7-ICT-265505 (CADMAD), the ATIGE-Genopole, and the Fondation pour la Recherche Medicale grants to AJ, and by grant BFU2009-06993 from the Spanish Ministerio de Ciencia e Innovacion to SFE and ESPSOL Fundacion Genoma Espana and EUSOL European Commission Contract number: FOOD-CT-2006-016214, to AG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
dc.language Español es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS Computational Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Lean manufacturing es_ES
dc.subject Transcriptomic data es_ES
dc.subject Metabolomic data es_ES
dc.subject Phenomic data es_ES
dc.title Fine-tuning tomato agronomic properties by computational genome redesign es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pcbi.1002528
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/043338/EU/
dc.relation.projectID info:eu-repo/grantAgreement/MEC//TIN2006-12860/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/265505/EU/Paving the Way for Future Emerging DNA-based Technologies: Computer-Aided Design and Manufacturing of DNA libraries/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/16214/EU/High Quality Solanaceous Crops for Consumers, Processors and Producers by Exploration of Natural Biodiversity/EU-SOL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Carrera Montesinos, J.; Fernández Del Carmen, MA.; Fernández Muñoz, R.; Rambla Nebot, JL.; Pons Puig, C.; Jaramillo Rosales, A.; Elena Fito, SF.... (2012). Fine-tuning tomato agronomic properties by computational genome redesign. PLoS Computational Biology. 8(6):1002528-1002528. https://doi.org/10.1371/journal.pcbi.1002528 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pcbi.1002528 es_ES
dc.description.upvformatpinicio 1002528 es_ES
dc.description.upvformatpfin 1002528 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 232198 es_ES
dc.identifier.eissn 1553-7358
dc.identifier.pmid 22685389 en_EN
dc.identifier.pmcid PMC3369923 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449-453. doi:10.1038/nature04342 es_ES
dc.description.references Knight, T. F. (2005). Engineering novel life. Molecular Systems Biology, 1(1). doi:10.1038/msb4100028 es_ES
dc.description.references Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2(1). doi:10.1038/msb4100073 es_ES
dc.description.references Feist, A. M., Herrgård, M. J., Thiele, I., Reed, J. L., & Palsson, B. Ø. (2008). Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology, 7(2), 129-143. doi:10.1038/nrmicro1949 es_ES
dc.description.references Di Bernardo, D., Thompson, M. J., Gardner, T. S., Chobot, S. E., Eastwood, E. L., Wojtovich, A. P., … Collins, J. J. (2005). Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nature Biotechnology, 23(3), 377-383. doi:10.1038/nbt1075 es_ES
dc.description.references Carrera, J., Rodrigo, G., & Jaramillo, A. (2009). Model-based redesign of global transcription regulation. Nucleic Acids Research, 37(5), e38-e38. doi:10.1093/nar/gkp022 es_ES
dc.description.references Carrera, J., Rodrigo, G., Jaramillo, A., & Elena, S. F. (2009). Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biology, 10(9), R96. doi:10.1186/gb-2009-10-9-r96 es_ES
dc.description.references Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., … Gardner, T. S. (2007). Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biology, 5(1), e8. doi:10.1371/journal.pbio.0050008 es_ES
dc.description.references Bonneau, R., Facciotti, M. T., Reiss, D. J., Schmid, A. K., Pan, M., Kaur, A., … Baliga, N. S. (2007). A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell. Cell, 131(7), 1354-1365. doi:10.1016/j.cell.2007.10.053 es_ES
dc.description.references Tagkopoulos, I., Liu, Y.-C., & Tavazoie, S. (2008). Predictive Behavior Within Microbial Genetic Networks. Science, 320(5881), 1313-1317. doi:10.1126/science.1154456 es_ES
dc.description.references Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J., & Palsson, B. O. (2004). Integrating high-throughput and computational data elucidates bacterial networks. Nature, 429(6987), 92-96. doi:10.1038/nature02456 es_ES
dc.description.references Endy, D., & Brent, R. (2001). Modelling cellular behaviour. Nature, 409(6818), 391-395. doi:10.1038/35053181 es_ES
dc.description.references Joyce, A. R., & Palsson, B. Ø. (2006). The model organism as a system: integrating «omics» data sets. Nature Reviews Molecular Cell Biology, 7(3), 198-210. doi:10.1038/nrm1857 es_ES
dc.description.references Burgard, A. P., Pharkya, P., & Maranas, C. D. (2003). Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering, 84(6), 647-657. doi:10.1002/bit.10803 es_ES
dc.description.references Segre, D., Vitkup, D., & Church, G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences, 99(23), 15112-15117. doi:10.1073/pnas.232349399 es_ES
dc.description.references Rocha, M., Maia, P., Mendes, R., Pinto, J. P., Ferreira, E. C., Nielsen, J., … Rocha, I. (2008). Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-499 es_ES
dc.description.references Meyer, R. C., Steinfath, M., Lisec, J., Becher, M., Witucka-Wall, H., Torjek, O., … Altmann, T. (2007). The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 104(11), 4759-4764. doi:10.1073/pnas.0609709104 es_ES
dc.description.references Mounet, F., Moing, A., Garcia, V., Petit, J., Maucourt, M., Deborde, C., … Lemaire-Chamley, M. (2009). Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development. Plant Physiology, 149(3), 1505-1528. doi:10.1104/pp.108.133967 es_ES
dc.description.references Garcia, V., Stevens, R., Gil, L., Gilbert, L., Gest, N., Petit, J., … Rothan, C. (2009). An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. Comptes Rendus Biologies, 332(11), 1007-1021. doi:10.1016/j.crvi.2009.09.013 es_ES
dc.description.references Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., … Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24(4), 447-454. doi:10.1038/nbt1192 es_ES
dc.description.references Osorio, S., Alba, R., Damasceno, C. M. B., Lopez-Casado, G., Lohse, M., Zanor, M. I., … Fernie, A. R. (2011). Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (nor, rin) and Ethylene Receptor (Nr) Mutants Reveals Novel Regulatory Interactions. Plant Physiology, 157(1), 405-425. doi:10.1104/pp.111.175463 es_ES
dc.description.references Rohrmann, J., Tohge, T., Alba, R., Osorio, S., Caldana, C., McQuinn, R., … Fernie, A. R. (2011). Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. The Plant Journal, 68(6), 999-1013. doi:10.1111/j.1365-313x.2011.04750.x es_ES
dc.description.references Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., … Lander, E. S. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449(7164), 913-918. doi:10.1038/nature06250 es_ES
dc.description.references Daetwyler, H. D., Villanueva, B., Bijma, P., & Woolliams, J. A. (2007). Inbreeding in genome-wide selection. Journal of Animal Breeding and Genetics, 124(6), 369-376. doi:10.1111/j.1439-0388.2007.00693.x es_ES
dc.description.references Martin-Magniette, M.-L., Aubert, J., Bar-Hen, A., Elftieh, S., Magniette, F., Renou, J.-P., & Daudin, J.-J. (2008). Normalization for triple-target microarray experiments. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-216 es_ES
dc.description.references Riedelsheimer, C., Czedik-Eysenberg, A., Grieder, C., Lisec, J., Technow, F., Sulpice, R., … Melchinger, A. E. (2012). Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nature Genetics, 44(2), 217-220. doi:10.1038/ng.1033 es_ES
dc.description.references Shah, R., & Ward, P. T. (2002). Lean manufacturing: context, practice bundles, and performance. Journal of Operations Management, 21(2), 129-149. doi:10.1016/s0272-6963(02)00108-0 es_ES
dc.description.references Rosati, C., Diretto, G., & Giuliano, G. (2009). Biosynthesis and Engineering of Carotenoids and Apocarotenoids in Plants: State of the Art and Future Prospects. Biotechnology and Genetic Engineering Reviews, 26(1), 139-162. doi:10.5661/bger-26-139 es_ES
dc.description.references E., F., Y., L., L., C.-G., A., G., M., S., T., P., … D., Z. (2002). Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Molecular Genetics and Genomics, 266(5), 821-826. doi:10.1007/s00438-001-0599-4 es_ES
dc.description.references Cong, B., Barrero, L. S., & Tanksley, S. D. (2008). Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genetics, 40(6), 800-804. doi:10.1038/ng.144 es_ES
dc.description.references Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., … Bouzayen, M. (2009). Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling. The Plant Cell, 21(5), 1428-1452. doi:10.1105/tpc.108.060830 es_ES
dc.description.references Klee, H. J. (2010). Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44-56. doi:10.1111/j.1469-8137.2010.03281.x es_ES
dc.description.references Minoia, S., Petrozza, A., D’Onofrio, O., Piron, F., Mosca, G., Sozio, G., … Carriero, F. (2010). A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Research Notes, 3(1). doi:10.1186/1756-0500-3-69 es_ES
dc.description.references Bogdanove, A. J., & Voytas, D. F. (2011). TAL Effectors: Customizable Proteins for DNA Targeting. Science, 333(6051), 1843-1846. doi:10.1126/science.1204094 es_ES
dc.description.references Hetherington, S. E., Smillie, R. M., & Davies, W. J. (1998). Photosynthetic activities of vegetative and fruiting tissues of tomato. Journal of Experimental Botany, 49(324), 1173-1181. doi:10.1093/jxb/49.324.1173 es_ES
dc.description.references Fridman, E. (2004). Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions. Science, 305(5691), 1786-1789. doi:10.1126/science.1101666 es_ES
dc.description.references Agius, F., González-Lamothe, R., Caballero, J. L., Muñoz-Blanco, J., Botella, M. A., & Valpuesta, V. (2003). Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology, 21(2), 177-181. doi:10.1038/nbt777 es_ES
dc.description.references Cahoon, E. B., Hall, S. E., Ripp, K. G., Ganzke, T. S., Hitz, W. D., & Coughlan, S. J. (2003). Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature Biotechnology, 21(9), 1082-1087. doi:10.1038/nbt853 es_ES
dc.description.references Ye, X. (2000). Engineering the Provitamin A (-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science, 287(5451), 303-305. doi:10.1126/science.287.5451.303 es_ES
dc.description.references Aharoni, A., & Galili, G. (2011). Metabolic engineering of the plant primary–secondary metabolism interface. Current Opinion in Biotechnology, 22(2), 239-244. doi:10.1016/j.copbio.2010.11.004 es_ES
dc.description.references Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4 es_ES
dc.description.references Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086 es_ES
dc.description.references Lytovchenko, A., Eickmeier, I., Pons, C., Osorio, S., Szecowka, M., Lehmberg, K., … Fernie, A. R. (2011). Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening But Plays a Considerable Role in Seed Development. Plant Physiology, 157(4), 1650-1663. doi:10.1104/pp.111.186874 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem