Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449-453. doi:10.1038/nature04342
Knight, T. F. (2005). Engineering novel life. Molecular Systems Biology, 1(1). doi:10.1038/msb4100028
Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2(1). doi:10.1038/msb4100073
[+]
Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449-453. doi:10.1038/nature04342
Knight, T. F. (2005). Engineering novel life. Molecular Systems Biology, 1(1). doi:10.1038/msb4100028
Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2(1). doi:10.1038/msb4100073
Feist, A. M., Herrgård, M. J., Thiele, I., Reed, J. L., & Palsson, B. Ø. (2008). Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology, 7(2), 129-143. doi:10.1038/nrmicro1949
Di Bernardo, D., Thompson, M. J., Gardner, T. S., Chobot, S. E., Eastwood, E. L., Wojtovich, A. P., … Collins, J. J. (2005). Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nature Biotechnology, 23(3), 377-383. doi:10.1038/nbt1075
Carrera, J., Rodrigo, G., & Jaramillo, A. (2009). Model-based redesign of global transcription regulation. Nucleic Acids Research, 37(5), e38-e38. doi:10.1093/nar/gkp022
Carrera, J., Rodrigo, G., Jaramillo, A., & Elena, S. F. (2009). Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biology, 10(9), R96. doi:10.1186/gb-2009-10-9-r96
Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., … Gardner, T. S. (2007). Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biology, 5(1), e8. doi:10.1371/journal.pbio.0050008
Bonneau, R., Facciotti, M. T., Reiss, D. J., Schmid, A. K., Pan, M., Kaur, A., … Baliga, N. S. (2007). A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell. Cell, 131(7), 1354-1365. doi:10.1016/j.cell.2007.10.053
Tagkopoulos, I., Liu, Y.-C., & Tavazoie, S. (2008). Predictive Behavior Within Microbial Genetic Networks. Science, 320(5881), 1313-1317. doi:10.1126/science.1154456
Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J., & Palsson, B. O. (2004). Integrating high-throughput and computational data elucidates bacterial networks. Nature, 429(6987), 92-96. doi:10.1038/nature02456
Endy, D., & Brent, R. (2001). Modelling cellular behaviour. Nature, 409(6818), 391-395. doi:10.1038/35053181
Joyce, A. R., & Palsson, B. Ø. (2006). The model organism as a system: integrating «omics» data sets. Nature Reviews Molecular Cell Biology, 7(3), 198-210. doi:10.1038/nrm1857
Burgard, A. P., Pharkya, P., & Maranas, C. D. (2003). Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering, 84(6), 647-657. doi:10.1002/bit.10803
Segre, D., Vitkup, D., & Church, G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences, 99(23), 15112-15117. doi:10.1073/pnas.232349399
Rocha, M., Maia, P., Mendes, R., Pinto, J. P., Ferreira, E. C., Nielsen, J., … Rocha, I. (2008). Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-499
Meyer, R. C., Steinfath, M., Lisec, J., Becher, M., Witucka-Wall, H., Torjek, O., … Altmann, T. (2007). The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 104(11), 4759-4764. doi:10.1073/pnas.0609709104
Mounet, F., Moing, A., Garcia, V., Petit, J., Maucourt, M., Deborde, C., … Lemaire-Chamley, M. (2009). Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development. Plant Physiology, 149(3), 1505-1528. doi:10.1104/pp.108.133967
Garcia, V., Stevens, R., Gil, L., Gilbert, L., Gest, N., Petit, J., … Rothan, C. (2009). An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. Comptes Rendus Biologies, 332(11), 1007-1021. doi:10.1016/j.crvi.2009.09.013
Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., … Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24(4), 447-454. doi:10.1038/nbt1192
Osorio, S., Alba, R., Damasceno, C. M. B., Lopez-Casado, G., Lohse, M., Zanor, M. I., … Fernie, A. R. (2011). Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (nor, rin) and Ethylene Receptor (Nr) Mutants Reveals Novel Regulatory Interactions. Plant Physiology, 157(1), 405-425. doi:10.1104/pp.111.175463
Rohrmann, J., Tohge, T., Alba, R., Osorio, S., Caldana, C., McQuinn, R., … Fernie, A. R. (2011). Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. The Plant Journal, 68(6), 999-1013. doi:10.1111/j.1365-313x.2011.04750.x
Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., … Lander, E. S. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449(7164), 913-918. doi:10.1038/nature06250
Daetwyler, H. D., Villanueva, B., Bijma, P., & Woolliams, J. A. (2007). Inbreeding in genome-wide selection. Journal of Animal Breeding and Genetics, 124(6), 369-376. doi:10.1111/j.1439-0388.2007.00693.x
Martin-Magniette, M.-L., Aubert, J., Bar-Hen, A., Elftieh, S., Magniette, F., Renou, J.-P., & Daudin, J.-J. (2008). Normalization for triple-target microarray experiments. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-216
Riedelsheimer, C., Czedik-Eysenberg, A., Grieder, C., Lisec, J., Technow, F., Sulpice, R., … Melchinger, A. E. (2012). Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nature Genetics, 44(2), 217-220. doi:10.1038/ng.1033
Shah, R., & Ward, P. T. (2002). Lean manufacturing: context, practice bundles, and performance. Journal of Operations Management, 21(2), 129-149. doi:10.1016/s0272-6963(02)00108-0
Rosati, C., Diretto, G., & Giuliano, G. (2009). Biosynthesis and Engineering of Carotenoids and Apocarotenoids in Plants: State of the Art and Future Prospects. Biotechnology and Genetic Engineering Reviews, 26(1), 139-162. doi:10.5661/bger-26-139
E., F., Y., L., L., C.-G., A., G., M., S., T., P., … D., Z. (2002). Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Molecular Genetics and Genomics, 266(5), 821-826. doi:10.1007/s00438-001-0599-4
Cong, B., Barrero, L. S., & Tanksley, S. D. (2008). Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genetics, 40(6), 800-804. doi:10.1038/ng.144
Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., … Bouzayen, M. (2009). Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling. The Plant Cell, 21(5), 1428-1452. doi:10.1105/tpc.108.060830
Klee, H. J. (2010). Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44-56. doi:10.1111/j.1469-8137.2010.03281.x
Minoia, S., Petrozza, A., D’Onofrio, O., Piron, F., Mosca, G., Sozio, G., … Carriero, F. (2010). A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Research Notes, 3(1). doi:10.1186/1756-0500-3-69
Bogdanove, A. J., & Voytas, D. F. (2011). TAL Effectors: Customizable Proteins for DNA Targeting. Science, 333(6051), 1843-1846. doi:10.1126/science.1204094
Hetherington, S. E., Smillie, R. M., & Davies, W. J. (1998). Photosynthetic activities of vegetative and fruiting tissues of tomato. Journal of Experimental Botany, 49(324), 1173-1181. doi:10.1093/jxb/49.324.1173
Fridman, E. (2004). Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions. Science, 305(5691), 1786-1789. doi:10.1126/science.1101666
Agius, F., González-Lamothe, R., Caballero, J. L., Muñoz-Blanco, J., Botella, M. A., & Valpuesta, V. (2003). Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology, 21(2), 177-181. doi:10.1038/nbt777
Cahoon, E. B., Hall, S. E., Ripp, K. G., Ganzke, T. S., Hitz, W. D., & Coughlan, S. J. (2003). Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature Biotechnology, 21(9), 1082-1087. doi:10.1038/nbt853
Ye, X. (2000). Engineering the Provitamin A (-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science, 287(5451), 303-305. doi:10.1126/science.287.5451.303
Aharoni, A., & Galili, G. (2011). Metabolic engineering of the plant primary–secondary metabolism interface. Current Opinion in Biotechnology, 22(2), 239-244. doi:10.1016/j.copbio.2010.11.004
Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4
Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086
Lytovchenko, A., Eickmeier, I., Pons, C., Osorio, S., Szecowka, M., Lehmberg, K., … Fernie, A. R. (2011). Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening But Plays a Considerable Role in Seed Development. Plant Physiology, 157(4), 1650-1663. doi:10.1104/pp.111.186874
[-]