- -

A new methodology to estimate the discrete-return point density on airborne lidar surveys

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new methodology to estimate the discrete-return point density on airborne lidar surveys

Mostrar el registro completo del ítem

Balsa Barreiro, J.; Lerma García, JL. (2014). A new methodology to estimate the discrete-return point density on airborne lidar surveys. International Journal of Remote Sensing. 35(4):1496-1510. doi:10.1080/01431161.2013.878063

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59298

Ficheros en el ítem

Metadatos del ítem

Título: A new methodology to estimate the discrete-return point density on airborne lidar surveys
Autor: Balsa Barreiro, José Lerma García, José Luis
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Fecha difusión:
Resumen:
The distribution of the discrete-return point density in airborne lidar flights obtained from an oscillating mirror laser scanner is analysed and alternative formulations to determine its value are presented. The point ...[+]
Palabras clave: LiDAR , Point density , Weighted arithmetic mean
Derechos de uso: Cerrado
Fuente:
International Journal of Remote Sensing. (issn: 0143-1161 )
DOI: 10.1080/01431161.2013.878063
Editorial:
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Versión del editor: http://dx.doi.org/10.1080/01431161.2013.878063
Descripción: This is an author's accepted manuscript of an article published in "International Journal of Remote Sensing", Volume 35, Issue 4, 2014; copyright Taylor & Francis, available online at: http://www.tandfonline.com/doi/abs/10.1080/01431161.2013.878063
Tipo: Artículo

References

Anderson, E. S., Thompson, J. A., & Austin, R. E. (2005). LIDAR density and linear interpolator effects on elevation estimates. International Journal of Remote Sensing, 26(18), 3889-3900. doi:10.1080/01431160500181671

Balsa-Barreiro, J. (2012). Airborne light detection and ranging (LiDAR) point density analysis. Scientific Research and Essays, 7(33). doi:10.5897/sre12.278

Baltsavias, E. . (1999). Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 199-214. doi:10.1016/s0924-2716(99)00015-5 [+]
Anderson, E. S., Thompson, J. A., & Austin, R. E. (2005). LIDAR density and linear interpolator effects on elevation estimates. International Journal of Remote Sensing, 26(18), 3889-3900. doi:10.1080/01431160500181671

Balsa-Barreiro, J. (2012). Airborne light detection and ranging (LiDAR) point density analysis. Scientific Research and Essays, 7(33). doi:10.5897/sre12.278

Baltsavias, E. . (1999). Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 199-214. doi:10.1016/s0924-2716(99)00015-5

Borovkova, S., Jaya Permana, F., & Pavlyukevich, I. (2009). Modeling electricity prices by potential Lévy diffusions. The Journal of Energy Markets, 2(3), 83-110. doi:10.21314/jem.2009.022

Efromovich, S. (2004). Density estimation for biased data. The Annals of Statistics, 32(3), 1137-1161. doi:10.1214/009053604000000300

Ferguson, T. S. (1961). Rules for Rejection of Outliers. Revue de l’Institut International de Statistique / Review of the International Statistical Institute, 29(3), 29. doi:10.2307/1401948

Gentleman, J. F., & Wilk, M. B. (1975). Detecting Outliers in a Two-Way Table: I. Statistical Behavior of Residuals. Technometrics, 17(1), 1-14. doi:10.1080/00401706.1975.10489265

Gentleman, J. F., & Wilk, M. B. (1975). Detecting Outliers. II. Supplementing the Direct Analysis of Residuals. Biometrics, 31(2), 387. doi:10.2307/2529428

Grubbs, F. E. (1950). Sample Criteria for Testing Outlying Observations. The Annals of Mathematical Statistics, 21(1), 27-58. doi:10.1214/aoms/1177729885

Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11(1), 1-21. doi:10.1080/00401706.1969.10490657

Grubbs, F. E., & Beck, G. (1972). Extension of Sample Sizes and Percentage Points for Significance Tests of Outlying Observations. Technometrics, 14(4), 847-854. doi:10.1080/00401706.1972.10488981

Guttman, I., & Smith, D. E. (1969). Investigation of Rules for Dealing With Outliers in Small Samples from the Normal Distribution: I: Estimation of the Mean. Technometrics, 11(3), 527-550. doi:10.1080/00401706.1969.10490710

Guttman, I., & Smith, D. E. (1971). Investigation of Rules for Dealing with Outliers in Small Samples from the Normal Distribution II: Estimation of the Variance. Technometrics, 13(1), 101-111. doi:10.1080/00401706.1971.10488757

Hawkins, D. M. (1973). Repeated testing for outliers. Statistica Neerlandica, 27(1), 1-10. doi:10.1111/j.1467-9574.1973.tb00202.x

Hawkins, D. M. (1978). Analysis of three tests for one or two outliers. Statistica Neerlandica, 32(3), 137-148. doi:10.1111/j.1467-9574.1978.tb01394.x

Hawkins, D. M. (1979). Fractiles of an extended multiple outlier test. Journal of Statistical Computation and Simulation, 8(3-4), 227-236. doi:10.1080/00949657908810268

Lari, Z., & Habib, A. (2012). ALTERNATIVE METHODOLOGIES FOR THE ESTIMATION OF LOCAL POINT DENSITY INDEX: MOVING TOWARDS ADAPTIVE LIDAR DATA PROCESSING. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B3, 127-132. doi:10.5194/isprsarchives-xxxix-b3-127-2012

Lari, Z., & Habib, A. (2013). New Approaches for Estimating the Local Point Density and its Impact on Lidar Data Segmentation. Photogrammetric Engineering & Remote Sensing, 79(2), 195-207. doi:10.14358/pers.79.2.195

Limbrunner, J. F., Vogel, R. M., & Brown, L. C. (2000). Estimation of Harmonic Mean of a Lognormal Variable. Journal of Hydrologic Engineering, 5(1), 59-66. doi:10.1061/(asce)1084-0699(2000)5:1(59)

Mitchell, D. W. (2004). 88.27 More on spreads and non-arithmetic means. The Mathematical Gazette, 88(511), 142-144. doi:10.1017/s0025557200174534

Nava-Ortega, R. A., Espino-Barr, E., Gallardo-Cabello, M., Garcia-Boa, A., Puente-Gómez, M., & Cabral-Solís, E. G. (2012). Growth analysis of the Pacific sierra Scomberomorus sierra in Colima, México. Revista de biología marina y oceanografía, 47(2), 273-281. doi:10.4067/s0718-19572012000200009

Raber, G. T., Jensen, J. R., Hodgson, M. E., Tullis, J. A., Davis, B. A., & Berglund, J. (2007). Impact of Lidar Nominal Post-spacing on DEM Accuracy and Flood Zone Delineation. Photogrammetric Engineering & Remote Sensing, 73(7), 793-804. doi:10.14358/pers.73.7.793

Rossman, L. A. (1990). Design Stream Flows Based on Harmonic Means. Journal of Hydraulic Engineering, 116(7), 946-950. doi:10.1061/(asce)0733-9429(1990)116:7(946)

Sharma, R. (2008). Some more inequalities for arithmetic mean, harmonic mean and variance. Journal of Mathematical Inequalities, (1), 109-114. doi:10.7153/jmi-02-11

Tesfamichael, S. G., Ahmed, F. B., & Van Aardt, J. A. N. (2010). Investigating the impact of discrete-return lidar point density on estimations of mean and dominant plot-level tree height in Eucalyptus grandis plantations. International Journal of Remote Sensing, 31(11), 2925-2940. doi:10.1080/01431160903144086

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem