Mostrar el registro sencillo del ítem
dc.contributor.author | Balsa Barreiro, José![]() |
es_ES |
dc.contributor.author | Lerma García, José Luis![]() |
es_ES |
dc.date.accessioned | 2015-12-30T09:16:08Z | |
dc.date.available | 2015-12-30T09:16:08Z | |
dc.date.issued | 2014-02 | |
dc.identifier.issn | 0143-1161 | |
dc.identifier.uri | http://hdl.handle.net/10251/59298 | |
dc.description | This is an author's accepted manuscript of an article published in "International Journal of Remote Sensing", Volume 35, Issue 4, 2014; copyright Taylor & Francis, available online at: http://www.tandfonline.com/doi/abs/10.1080/01431161.2013.878063 | es_ES |
dc.description.abstract | The distribution of the discrete-return point density in airborne lidar flights obtained from an oscillating mirror laser scanner is analysed and alternative formulations to determine its value are presented. The point density in a lidar swath varies and can best be fitted with a potential function. This study confirms that calculating the overall point density with traditional statistical parameters yields biased results owing to the abnormally high densities of the swath boundaries. New formulas for calculating the representative mean are proposed: a weighted arithmetic mean (WAM) based on a potential function; geometric mean (GM); and harmonic mean (HM). All three means give more weight to the central sectors across the strip and less to the boundary sectors where extreme data redundancy exists. The WAM based on a potential function yields equivalent estimates as the HM; the GM yields slightly higher estimates. The results obtained improve the mean estimation and, more importantly, allow users to estimate better the mean point density on airborne lidar surveys, which are usually overestimated approximately by 15%. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis: STM, Behavioural Science and Public Health Titles | es_ES |
dc.relation.ispartof | International Journal of Remote Sensing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | LiDAR | es_ES |
dc.subject | Point density | es_ES |
dc.subject | Weighted arithmetic mean | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | A new methodology to estimate the discrete-return point density on airborne lidar surveys | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/01431161.2013.878063 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Balsa Barreiro, J.; Lerma García, JL. (2014). A new methodology to estimate the discrete-return point density on airborne lidar surveys. International Journal of Remote Sensing. 35(4):1496-1510. doi:10.1080/01431161.2013.878063 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/01431161.2013.878063 | es_ES |
dc.description.upvformatpinicio | 1496 | es_ES |
dc.description.upvformatpfin | 1510 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 258342 | es_ES |
dc.description.references | Anderson, E. S., Thompson, J. A., & Austin, R. E. (2005). LIDAR density and linear interpolator effects on elevation estimates. International Journal of Remote Sensing, 26(18), 3889-3900. doi:10.1080/01431160500181671 | es_ES |
dc.description.references | Balsa-Barreiro, J. (2012). Airborne light detection and ranging (LiDAR) point density analysis. Scientific Research and Essays, 7(33). doi:10.5897/sre12.278 | es_ES |
dc.description.references | Baltsavias, E. . (1999). Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 199-214. doi:10.1016/s0924-2716(99)00015-5 | es_ES |
dc.description.references | Borovkova, S., Jaya Permana, F., & Pavlyukevich, I. (2009). Modeling electricity prices by potential Lévy diffusions. The Journal of Energy Markets, 2(3), 83-110. doi:10.21314/jem.2009.022 | es_ES |
dc.description.references | Efromovich, S. (2004). Density estimation for biased data. The Annals of Statistics, 32(3), 1137-1161. doi:10.1214/009053604000000300 | es_ES |
dc.description.references | Ferguson, T. S. (1961). Rules for Rejection of Outliers. Revue de l’Institut International de Statistique / Review of the International Statistical Institute, 29(3), 29. doi:10.2307/1401948 | es_ES |
dc.description.references | Gentleman, J. F., & Wilk, M. B. (1975). Detecting Outliers in a Two-Way Table: I. Statistical Behavior of Residuals. Technometrics, 17(1), 1-14. doi:10.1080/00401706.1975.10489265 | es_ES |
dc.description.references | Gentleman, J. F., & Wilk, M. B. (1975). Detecting Outliers. II. Supplementing the Direct Analysis of Residuals. Biometrics, 31(2), 387. doi:10.2307/2529428 | es_ES |
dc.description.references | Grubbs, F. E. (1950). Sample Criteria for Testing Outlying Observations. The Annals of Mathematical Statistics, 21(1), 27-58. doi:10.1214/aoms/1177729885 | es_ES |
dc.description.references | Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11(1), 1-21. doi:10.1080/00401706.1969.10490657 | es_ES |
dc.description.references | Grubbs, F. E., & Beck, G. (1972). Extension of Sample Sizes and Percentage Points for Significance Tests of Outlying Observations. Technometrics, 14(4), 847-854. doi:10.1080/00401706.1972.10488981 | es_ES |
dc.description.references | Guttman, I., & Smith, D. E. (1969). Investigation of Rules for Dealing With Outliers in Small Samples from the Normal Distribution: I: Estimation of the Mean. Technometrics, 11(3), 527-550. doi:10.1080/00401706.1969.10490710 | es_ES |
dc.description.references | Guttman, I., & Smith, D. E. (1971). Investigation of Rules for Dealing with Outliers in Small Samples from the Normal Distribution II: Estimation of the Variance. Technometrics, 13(1), 101-111. doi:10.1080/00401706.1971.10488757 | es_ES |
dc.description.references | Hawkins, D. M. (1973). Repeated testing for outliers. Statistica Neerlandica, 27(1), 1-10. doi:10.1111/j.1467-9574.1973.tb00202.x | es_ES |
dc.description.references | Hawkins, D. M. (1978). Analysis of three tests for one or two outliers. Statistica Neerlandica, 32(3), 137-148. doi:10.1111/j.1467-9574.1978.tb01394.x | es_ES |
dc.description.references | Hawkins, D. M. (1979). Fractiles of an extended multiple outlier test. Journal of Statistical Computation and Simulation, 8(3-4), 227-236. doi:10.1080/00949657908810268 | es_ES |
dc.description.references | Lari, Z., & Habib, A. (2012). ALTERNATIVE METHODOLOGIES FOR THE ESTIMATION OF LOCAL POINT DENSITY INDEX: MOVING TOWARDS ADAPTIVE LIDAR DATA PROCESSING. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B3, 127-132. doi:10.5194/isprsarchives-xxxix-b3-127-2012 | es_ES |
dc.description.references | Lari, Z., & Habib, A. (2013). New Approaches for Estimating the Local Point Density and its Impact on Lidar Data Segmentation. Photogrammetric Engineering & Remote Sensing, 79(2), 195-207. doi:10.14358/pers.79.2.195 | es_ES |
dc.description.references | Limbrunner, J. F., Vogel, R. M., & Brown, L. C. (2000). Estimation of Harmonic Mean of a Lognormal Variable. Journal of Hydrologic Engineering, 5(1), 59-66. doi:10.1061/(asce)1084-0699(2000)5:1(59) | es_ES |
dc.description.references | Mitchell, D. W. (2004). 88.27 More on spreads and non-arithmetic means. The Mathematical Gazette, 88(511), 142-144. doi:10.1017/s0025557200174534 | es_ES |
dc.description.references | Nava-Ortega, R. A., Espino-Barr, E., Gallardo-Cabello, M., Garcia-Boa, A., Puente-Gómez, M., & Cabral-Solís, E. G. (2012). Growth analysis of the Pacific sierra Scomberomorus sierra in Colima, México. Revista de biología marina y oceanografía, 47(2), 273-281. doi:10.4067/s0718-19572012000200009 | es_ES |
dc.description.references | Raber, G. T., Jensen, J. R., Hodgson, M. E., Tullis, J. A., Davis, B. A., & Berglund, J. (2007). Impact of Lidar Nominal Post-spacing on DEM Accuracy and Flood Zone Delineation. Photogrammetric Engineering & Remote Sensing, 73(7), 793-804. doi:10.14358/pers.73.7.793 | es_ES |
dc.description.references | Rossman, L. A. (1990). Design Stream Flows Based on Harmonic Means. Journal of Hydraulic Engineering, 116(7), 946-950. doi:10.1061/(asce)0733-9429(1990)116:7(946) | es_ES |
dc.description.references | Sharma, R. (2008). Some more inequalities for arithmetic mean, harmonic mean and variance. Journal of Mathematical Inequalities, (1), 109-114. doi:10.7153/jmi-02-11 | es_ES |
dc.description.references | Tesfamichael, S. G., Ahmed, F. B., & Van Aardt, J. A. N. (2010). Investigating the impact of discrete-return lidar point density on estimations of mean and dominant plot-level tree height in Eucalyptus grandis plantations. International Journal of Remote Sensing, 31(11), 2925-2940. doi:10.1080/01431160903144086 | es_ES |