- -

Empirical study of variation in lidar point density over different land covers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Empirical study of variation in lidar point density over different land covers

Show full item record

Balsa Barreiro, J.; Lerma García, JL. (2014). Empirical study of variation in lidar point density over different land covers. International Journal of Remote Sensing. 35(9):3372-3383. doi:10.1080/01431161.2014.903355

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59299

Files in this item

Item Metadata

Title: Empirical study of variation in lidar point density over different land covers
Author: Balsa Barreiro, José Lerma García, José Luis
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Issued date:
Abstract:
Point density in airborne lidar surveys is one of the key parameters that influence not only the accuracy of generated DSM/DEM but also processing and costs. Point density variations occur (independently of keeping ...[+]
Subjects: LIDAR , Point density , Land covers
Copyrigths: Cerrado
Source:
International Journal of Remote Sensing. (issn: 0143-1161 )
DOI: 10.1080/01431161.2014.903355
Publisher:
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Publisher version: http://dx.doi.org/10.1080/01431161.2014.903355
Description: This is an author's accepted manuscript of an article published in International Journal of Remote Sensing; Volume 35, Issue 9, 2014 ; copyright Taylor & Francis, available online at: http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.903355
Type: Artículo

References

Anderson, E. S., Thompson, J. A., & Austin, R. E. (2005). LIDAR density and linear interpolator effects on elevation estimates. International Journal of Remote Sensing, 26(18), 3889-3900. doi:10.1080/01431160500181671

Anderson, E. S., Thompson, J. A., Crouse, D. A., & Austin, R. E. (2006). Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM. Geoderma, 132(3-4), 406-415. doi:10.1016/j.geoderma.2005.06.004

Artuso, R., S. Bovet, and A. Streilein. 2003. “Practical Methods for the Verification of Countrywide Produced Terrain and Surface Models.” International Archives of Photogrammetry and Remote Sensing, IAPRS, vol. XXXIV (3/W13), 14–19. Dresden, October 8–10. [+]
Anderson, E. S., Thompson, J. A., & Austin, R. E. (2005). LIDAR density and linear interpolator effects on elevation estimates. International Journal of Remote Sensing, 26(18), 3889-3900. doi:10.1080/01431160500181671

Anderson, E. S., Thompson, J. A., Crouse, D. A., & Austin, R. E. (2006). Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM. Geoderma, 132(3-4), 406-415. doi:10.1016/j.geoderma.2005.06.004

Artuso, R., S. Bovet, and A. Streilein. 2003. “Practical Methods for the Verification of Countrywide Produced Terrain and Surface Models.” International Archives of Photogrammetry and Remote Sensing, IAPRS, vol. XXXIV (3/W13), 14–19. Dresden, October 8–10.

Axelsson, P. 2000. “DEM Generation from Laser Scanner Data Using Adaptative TIN Models.” International Archives of Photogrammetry and Remote Sensing, IAPRS, Amsterdam, Netherlands, vol. XXXIII (B4/1), 110–117, Amsterdam, July 16–22.

Balsa-Barreiro, J., & Lerma, J. L. (2014). A new methodology to estimate the discrete-return point density on airborne lidar surveys. International Journal of Remote Sensing, 35(4), 1496-1510. doi:10.1080/01431161.2013.878063

Balsa-Barreiro, J. (2012). Airborne light detection and ranging (LiDAR) point density analysis. Scientific Research and Essays, 7(33). doi:10.5897/sre12.278

Baltsavias, E. P. (1999). Airborne laser scanning: existing systems and firms and other resources. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 164-198. doi:10.1016/s0924-2716(99)00016-7

Heidemann, H. K. 2012. “Lidar Base Specification (Version 1.0).” InU.S. Geological Survey Techniques and Methods, Book 11, Chap. B4, 63p. Reston, VA: USGS.

Hodgson, M. E., & Bresnahan, P. (2004). Accuracy of Airborne Lidar-Derived Elevation. Photogrammetric Engineering & Remote Sensing, 70(3), 331-339. doi:10.14358/pers.70.3.331

Liu, X., Z. Zhang, J. Peterson, and S. Chandra. 2007. “The Effect of LiDAR Data Density on DEM Accuracy.” InInternational Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability, December 10–13, 1363–1369. Christchurch: Modelling and Simulation Society of Australia and New Zealand.

Raber, G. 2003. “The Effect of LiDAR Posting Density on DEM Accuracy and Flood Extent Delineation: A GIS-Simulation Approach.” InProceedings of the UCGIS Summer Assembly, June 17–19, 34pp, Pacific Grove, CA: United Consortium for Geographic Information Science (UCGIS).

Raber, G. T., Jensen, J. R., Hodgson, M. E., Tullis, J. A., Davis, B. A., & Berglund, J. (2007). Impact of Lidar Nominal Post-spacing on DEM Accuracy and Flood Zone Delineation. Photogrammetric Engineering & Remote Sensing, 73(7), 793-804. doi:10.14358/pers.73.7.793

Reutebuch, S. E., McGaughey, R. J., Andersen, H.-E., & Carson, W. W. (2003). Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Canadian Journal of Remote Sensing, 29(5), 527-535. doi:10.5589/m03-022

Su, J., & Bork, E. (2006). Influence of Vegetation, Slope, and Lidar Sampling Angle on DEM Accuracy. Photogrammetric Engineering & Remote Sensing, 72(11), 1265-1274. doi:10.14358/pers.72.11.1265

Tesfamichael, S. G., Ahmed, F. B., & Van Aardt, J. A. N. (2010). Investigating the impact of discrete-return lidar point density on estimations of mean and dominant plot-level tree height in Eucalyptus grandis plantations. International Journal of Remote Sensing, 31(11), 2925-2940. doi:10.1080/01431160903144086

Triglav-Čekada, M., Crosilla, F., & Kosmatin-Fras, M. (2009). A Simplified Analytical Model for a-priori Lidar Point-positioning Error Estimation and a Review of Lidar Error Sources. Photogrammetric Engineering & Remote Sensing, 75(12), 1425-1439. doi:10.14358/pers.75.12.1425

Wang, Y., Weinacker, H., & Koch, B. (2008). A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest. Sensors, 8(6), 3938-3951. doi:10.3390/s8063938

Watershed Sciences, Inc. 2010.Minimum LiDAR considerations in the Pacific Northwest. Accessed April 1, 2014. http://www.oregongeology.org/sub/projects/olc/minimum-lidar-data-density.pdf.

Wehr, A., & Lohr, U. (1999). Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 68-82. doi:10.1016/s0924-2716(99)00011-8

Yu, X., J. Hyyppä, H. Hyyppä, and M. Maltamo. 2004. “Effects of Flight Altitude on Tree Height Estimation Using Airborne Laser Scanning.” InInternational Conference NATSCAN International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, October 3–6, vol. XXXVI (8/W2), 96–101. Freiburg: IAPRS.

Yu, X., H. Hyyppä, H. Kaartinen, J. Hyyppä, E. Ahokas, and S. Kaasalainen. 2005. “Applicability of First Pulse Derived Digital Terrain Models for Boreal Forest Studies.” ISPRS Workshop Laser scanning, WG III/3, III/4, V/3, 97–102, Enschede, September 12–14.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record