Mostrar el registro sencillo del ítem
dc.contributor.author | Balsa Barreiro, José | es_ES |
dc.contributor.author | Lerma García, José Luis | es_ES |
dc.date.accessioned | 2015-12-30T09:19:47Z | |
dc.date.available | 2015-12-30T09:19:47Z | |
dc.date.issued | 2014-04 | |
dc.identifier.issn | 0143-1161 | |
dc.identifier.uri | http://hdl.handle.net/10251/59299 | |
dc.description | This is an author's accepted manuscript of an article published in International Journal of Remote Sensing; Volume 35, Issue 9, 2014 ; copyright Taylor & Francis, available online at: http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.903355 | es_ES |
dc.description.abstract | Point density in airborne lidar surveys is one of the key parameters that influence not only the accuracy of generated DSM/DEM but also processing and costs. Point density variations occur (independently of keeping constant flight parameters) throughout the survey depending on the topography, the land cover, and the laser scanning mechanism. In this article, variations in point density across different land covers are analysed with an airborne oscillating mirror laser scanner. A wide group of samples from the different land covers is taken from single flight strips over level ground in order to minimize the effect of topography. The influence of the oscillating mirror laser scanner system is also minimized considering points along the central swath area. Mean values for each land cover are established regarding ground point density and first pulse returns. Significant differences in both raw points as well as on-the-ground points are registered, mainly due to the presence of features over the ground and the degree of opacity thereof. Regarding ground points, the relative differences between the two software packages used are 5% approximately. Significant point density differences can be found among the six analysed land covers. Furthermore, extrapolated pulse rate increments are presented to fulfil lidar specifications that neglect land cover as an input parameter to satisfy ground point density values, namely in non-overlapping areas. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis: STM, Behavioural Science and Public Health Titles | es_ES |
dc.relation.ispartof | International Journal of Remote Sensing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | LIDAR | es_ES |
dc.subject | Point density | es_ES |
dc.subject | Land covers | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Empirical study of variation in lidar point density over different land covers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/01431161.2014.903355 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Balsa Barreiro, J.; Lerma García, JL. (2014). Empirical study of variation in lidar point density over different land covers. International Journal of Remote Sensing. 35(9):3372-3383. doi:10.1080/01431161.2014.903355 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/01431161.2014.903355 | es_ES |
dc.description.upvformatpinicio | 3372 | es_ES |
dc.description.upvformatpfin | 3383 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 281320 | es_ES |
dc.description.references | Anderson, E. S., Thompson, J. A., & Austin, R. E. (2005). LIDAR density and linear interpolator effects on elevation estimates. International Journal of Remote Sensing, 26(18), 3889-3900. doi:10.1080/01431160500181671 | es_ES |
dc.description.references | Anderson, E. S., Thompson, J. A., Crouse, D. A., & Austin, R. E. (2006). Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM. Geoderma, 132(3-4), 406-415. doi:10.1016/j.geoderma.2005.06.004 | es_ES |
dc.description.references | Artuso, R., S. Bovet, and A. Streilein. 2003. “Practical Methods for the Verification of Countrywide Produced Terrain and Surface Models.” International Archives of Photogrammetry and Remote Sensing, IAPRS, vol. XXXIV (3/W13), 14–19. Dresden, October 8–10. | es_ES |
dc.description.references | Axelsson, P. 2000. “DEM Generation from Laser Scanner Data Using Adaptative TIN Models.” International Archives of Photogrammetry and Remote Sensing, IAPRS, Amsterdam, Netherlands, vol. XXXIII (B4/1), 110–117, Amsterdam, July 16–22. | es_ES |
dc.description.references | Balsa-Barreiro, J., & Lerma, J. L. (2014). A new methodology to estimate the discrete-return point density on airborne lidar surveys. International Journal of Remote Sensing, 35(4), 1496-1510. doi:10.1080/01431161.2013.878063 | es_ES |
dc.description.references | Balsa-Barreiro, J. (2012). Airborne light detection and ranging (LiDAR) point density analysis. Scientific Research and Essays, 7(33). doi:10.5897/sre12.278 | es_ES |
dc.description.references | Baltsavias, E. P. (1999). Airborne laser scanning: existing systems and firms and other resources. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 164-198. doi:10.1016/s0924-2716(99)00016-7 | es_ES |
dc.description.references | Heidemann, H. K. 2012. “Lidar Base Specification (Version 1.0).” InU.S. Geological Survey Techniques and Methods, Book 11, Chap. B4, 63p. Reston, VA: USGS. | es_ES |
dc.description.references | Hodgson, M. E., & Bresnahan, P. (2004). Accuracy of Airborne Lidar-Derived Elevation. Photogrammetric Engineering & Remote Sensing, 70(3), 331-339. doi:10.14358/pers.70.3.331 | es_ES |
dc.description.references | Liu, X., Z. Zhang, J. Peterson, and S. Chandra. 2007. “The Effect of LiDAR Data Density on DEM Accuracy.” InInternational Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability, December 10–13, 1363–1369. Christchurch: Modelling and Simulation Society of Australia and New Zealand. | es_ES |
dc.description.references | Raber, G. 2003. “The Effect of LiDAR Posting Density on DEM Accuracy and Flood Extent Delineation: A GIS-Simulation Approach.” InProceedings of the UCGIS Summer Assembly, June 17–19, 34pp, Pacific Grove, CA: United Consortium for Geographic Information Science (UCGIS). | es_ES |
dc.description.references | Raber, G. T., Jensen, J. R., Hodgson, M. E., Tullis, J. A., Davis, B. A., & Berglund, J. (2007). Impact of Lidar Nominal Post-spacing on DEM Accuracy and Flood Zone Delineation. Photogrammetric Engineering & Remote Sensing, 73(7), 793-804. doi:10.14358/pers.73.7.793 | es_ES |
dc.description.references | Reutebuch, S. E., McGaughey, R. J., Andersen, H.-E., & Carson, W. W. (2003). Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Canadian Journal of Remote Sensing, 29(5), 527-535. doi:10.5589/m03-022 | es_ES |
dc.description.references | Su, J., & Bork, E. (2006). Influence of Vegetation, Slope, and Lidar Sampling Angle on DEM Accuracy. Photogrammetric Engineering & Remote Sensing, 72(11), 1265-1274. doi:10.14358/pers.72.11.1265 | es_ES |
dc.description.references | Tesfamichael, S. G., Ahmed, F. B., & Van Aardt, J. A. N. (2010). Investigating the impact of discrete-return lidar point density on estimations of mean and dominant plot-level tree height in Eucalyptus grandis plantations. International Journal of Remote Sensing, 31(11), 2925-2940. doi:10.1080/01431160903144086 | es_ES |
dc.description.references | Triglav-Čekada, M., Crosilla, F., & Kosmatin-Fras, M. (2009). A Simplified Analytical Model for a-priori Lidar Point-positioning Error Estimation and a Review of Lidar Error Sources. Photogrammetric Engineering & Remote Sensing, 75(12), 1425-1439. doi:10.14358/pers.75.12.1425 | es_ES |
dc.description.references | Wang, Y., Weinacker, H., & Koch, B. (2008). A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest. Sensors, 8(6), 3938-3951. doi:10.3390/s8063938 | es_ES |
dc.description.references | Watershed Sciences, Inc. 2010.Minimum LiDAR considerations in the Pacific Northwest. Accessed April 1, 2014. http://www.oregongeology.org/sub/projects/olc/minimum-lidar-data-density.pdf. | es_ES |
dc.description.references | Wehr, A., & Lohr, U. (1999). Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 68-82. doi:10.1016/s0924-2716(99)00011-8 | es_ES |
dc.description.references | Yu, X., J. Hyyppä, H. Hyyppä, and M. Maltamo. 2004. “Effects of Flight Altitude on Tree Height Estimation Using Airborne Laser Scanning.” InInternational Conference NATSCAN International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, October 3–6, vol. XXXVI (8/W2), 96–101. Freiburg: IAPRS. | es_ES |
dc.description.references | Yu, X., H. Hyyppä, H. Kaartinen, J. Hyyppä, E. Ahokas, and S. Kaasalainen. 2005. “Applicability of First Pulse Derived Digital Terrain Models for Boreal Forest Studies.” ISPRS Workshop Laser scanning, WG III/3, III/4, V/3, 97–102, Enschede, September 12–14. | es_ES |