- -

Determination of Oxygen Permeability in Acrylic-Based Hydrogels by Proton NMR Spectroscopy and Imaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Determination of Oxygen Permeability in Acrylic-Based Hydrogels by Proton NMR Spectroscopy and Imaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Compañ Moreno, Vicente es_ES
dc.contributor.author Mollá Romano, Sergio es_ES
dc.contributor.author Vallejos, Saul es_ES
dc.contributor.author Garcia, Felix es_ES
dc.contributor.author Miguel Garcia, Jose es_ES
dc.contributor.author Guzman, Julio es_ES
dc.contributor.author Garrido, Leoncio es_ES
dc.date.accessioned 2016-01-08T08:50:56Z
dc.date.issued 2014-04
dc.identifier.issn 1022-1352
dc.identifier.uri http://hdl.handle.net/10251/59537
dc.description.abstract Polymer network membranes with a high capacity for water absorption are obtained by radical polymerization of N-[2-(2-hydroxyethoxy)ethyl]methacrylamide (HEEMAM). The permeability, solubility, and diffusion coefficients of oxygen in hydrogels are determined using nuclear magnetic resonance (NMR) methods based on the paramagnetic effect of dissolved oxygen gas on the proton spin-lattice relaxation times of water, and the results are compared with those obtained with electrochemical procedures. The results of NMR measurements of oxygen transport coefficients in distilled water show excellent agreement with corresponding literature values. The results of the potentiostatic and NMR oxygen transport measurements in hydrogels are in reasonable agreement and support the viability of the NMR method es_ES
dc.description.sponsorship The authors gratefully acknowledge financial support provided by the Spanish Ministerio de Economia y Competitividad, projects MAT2011-29174-C02-02, FEDER MAT2011-22544, and FIS PI11/01436, and the Consejeria de Educacion-Junta de Castilla y Leon, project BU232U13. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Macromolecular Chemistry and Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject acrylic hydrogels es_ES
dc.subject oxygen permeability es_ES
dc.subject paramagnetism es_ES
dc.subject proton NMR imaging es_ES
dc.subject proton NMR spectroscopy es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Determination of Oxygen Permeability in Acrylic-Based Hydrogels by Proton NMR Spectroscopy and Imaging es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/macp.201300730
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-22544/ES/NUEVOS MATERIALES POLIMEROS: APLICACION COMO MEMBRANAS SENSORAS CROMO Y FLUOROGENICAS. METODOLOGIA PARA TRABAJAR CON MOLECULAS ORGANICAS INSOLUBLES EN AGUA EN MEDIOS ACUOSOS./ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Castilla y León//BU232U13/ES/POLÍMEROS FUNCIONALES ORGÁNICOS E HÍBRIDOS COMO MATERIALES AVANZADOS PARA APLICACIONES EN EL ÁMBITO DE LA PROTECCIÓN, LA INDUSTRIA, LA BIOMEDICINA Y EL MEDIO AMBIENTE./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PI11%2F01436/ES/BIOINGENIERIA DE SISTEMAS NEUROACTIVOS MULTICOMPONENTE PARA REGENERACIÓN AXONAL EN LESIÓN MEDULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-29174-C02-02/ES/MATERIALES NANOESTRUCTURADOS MULTIFUNCIONALES DE BASE INORGANICA O POLIMERICA PARA APLICACIONES EN ENERGIA Y TECNOLOGIAS DE LA COMUNICACION/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Compañ Moreno, V.; Mollá Romano, S.; Vallejos, S.; Garcia, F.; Miguel Garcia, J.; Guzman, J.; Garrido, L. (2014). Determination of Oxygen Permeability in Acrylic-Based Hydrogels by Proton NMR Spectroscopy and Imaging. Macromolecular Chemistry and Physics. 215(7):624-637. https://doi.org/10.1002/macp.201300730 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/macp.201300730 es_ES
dc.description.upvformatpinicio 624 es_ES
dc.description.upvformatpfin 637 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 215 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 259058 es_ES
dc.identifier.eissn 1521-3935
dc.contributor.funder Junta de Castilla y León es_ES
dc.description.references Kazanskii, K. S., & Dubrovskii, S. A. (1992). Chemistry and physics of «agricultural» hydrogels. Advances in Polymer Science, 97-133. doi:10.1007/3-540-55109-3_3 es_ES
dc.description.references Tsuruta, T. (1996). Contemporary topics in polymeric materials for biomedical applications. Advances in Polymer Science, 1-51. doi:10.1007/3-540-60484-7_1 es_ES
dc.description.references Goda, T., & Ishihara, K. (2006). Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Review of Medical Devices, 3(2), 167-174. doi:10.1586/17434440.3.2.167 es_ES
dc.description.references McGlinchey, S. M., McCoy, C. P., Gorman, S. P., & Jones, D. S. (2008). Key biological issues in contact lens development. Expert Review of Medical Devices, 5(5), 581-590. doi:10.1586/17434440.5.5.581 es_ES
dc.description.references Gates, G., Harmon, J. ., Ors, J., & Benz, P. (2003). Intra and intermolecular relaxations 2,3-dihydroxypropyl methacrylate and 2-hydroxyethyl methacrylate hydrogels. Polymer, 44(1), 207-214. doi:10.1016/s0032-3861(02)00725-5 es_ES
dc.description.references Compañ, V., Tiemblo, P., García, F., García, J. M., Guzmán, J., & Riande, E. (2005). A potentiostatic study of oxygen transport through poly(2-ethoxyethyl methacrylate-co-2,3-dihydroxypropylmethacrylate) hydrogel membranes. Biomaterials, 26(18), 3783-3791. doi:10.1016/j.biomaterials.2004.09.061 es_ES
dc.description.references Moszner, N., & Salz, U. (2007). Recent Developments of New Components for Dental Adhesives and Composites. Macromolecular Materials and Engineering, 292(3), 245-271. doi:10.1002/mame.200600414 es_ES
dc.description.references Erdodi, G., & Kennedy, J. P. (2005). Water-swollen highly oxygen permeable membranes: Analytical technique and syntheses. Journal of Polymer Science Part A: Polymer Chemistry, 43(16), 3491-3501. doi:10.1002/pola.20791 es_ES
dc.description.references Chhabra, M., Prausnitz, J. M., & Radke, C. J. (2008). Polarographic Method for Measuring Oxygen Diffusivity and Solubility in Water-Saturated Polymer Films:  Application to Hypertransmissible Soft Contact Lenses. Industrial & Engineering Chemistry Research, 47(10), 3540-3550. doi:10.1021/ie071071a es_ES
dc.description.references Hwang, S.-T., Tang, T. E. S., & Kammermeyer, K. (1971). Transport of dissolved oxygen through silicone rubber membrane. Journal of Macromolecular Science, Part B, 5(1), 1-10. doi:10.1080/00222347108212517 es_ES
dc.description.references Refojo, M. F., & Leong, F.-L. (1978). Water-dissolved-oxygen permeability coefficients of hydrogel contact lenses and boundary layer effects. Journal of Membrane Science, 4, 415-426. doi:10.1016/s0376-7388(00)83317-7 es_ES
dc.description.references Brennan, N. A., Efron, N., & Holden, B. A. (1986). Oxygen permeability of hard gas permeable contact lens materials. Clinical and Experimental Optometry, 69(3), 82-89. doi:10.1111/j.1444-0938.1986.tb06794.x es_ES
dc.description.references Compañ, V., Andrio, A., López-Alemany, A., & Riande, E. (1999). New method to determine the true transmissibilities and permeabilities of oxygen in hydrogel membranes. Polymer, 40(5), 1153-1158. doi:10.1016/s0032-3861(98)00348-6 es_ES
dc.description.references Compa�, V., L�pez, M. L., Andrio, A., L�pez-Alemany, A., & Refojo, M. F. (1999). Determination of the oxygen transmissibility and permeability of hydrogel contact lenses. Journal of Applied Polymer Science, 72(3), 321-327. doi:10.1002/(sici)1097-4628(19990418)72:3<321::aid-app2>3.0.co;2-l es_ES
dc.description.references Compañ, V. (1998). A potentiostatic study of oxygen transmissibility and permeability through hydrogel membranes. Biomaterials, 19(23), 2139-2145. doi:10.1016/s0142-9612(98)00113-6 es_ES
dc.description.references Park, J.-Y., Yoon, S. J., & Lee, H. (2003). Effect of Steric Hindrance on Carbon Dioxide Absorption into New Amine Solutions:  Thermodynamic and Spectroscopic Verification through Solubility and NMR Analysis. Environmental Science & Technology, 37(8), 1670-1675. doi:10.1021/es0260519 es_ES
dc.description.references Tomizaki, K., Kanakubo, M., Nanjo, H., Shimizu, S., Onoda, M., & Fujioka, Y. (2010). 13C NMR Studies on the Dissolution Mechanisms of Carbon Dioxide in Amine-Containing Aqueous Solvents at High Pressures toward an Integrated Coal Gasification Combined Cycle−Carbon Capture and Storage Process. Industrial & Engineering Chemistry Research, 49(3), 1222-1228. doi:10.1021/ie900870w es_ES
dc.description.references Autret, G., Liger-Belair, G., Nuzillard, J.-M., Parmentier, M., Montreynaud, A. D. de, Jeandet, P., … Beloeil, J.-C. (2005). Use of magnetic resonance spectroscopy for the investigation of the CO2 dissolved in champagne and sparkling wines: a nondestructive and unintrusive method. Analytica Chimica Acta, 535(1-2), 73-78. doi:10.1016/j.aca.2004.11.054 es_ES
dc.description.references Seto, T., Mashimo, T., Yoshiya, I., Kanashiro, M., & Taniguchi, Y. (1992). The solubility of volatile anaesthetics in water at 25.0°C using 19F NMR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 10(1), 1-7. doi:10.1016/0731-7085(92)80003-6 es_ES
dc.description.references Segebarth, N., Aïtjeddig, L., Locci, E., Bartik, K., & Luhmer, M. (2006). Novel Method for the Measurement of Xenon Gas Solubility Using129Xe NMR Spectroscopy. The Journal of Physical Chemistry A, 110(37), 10770-10776. doi:10.1021/jp062679k es_ES
dc.description.references Price, W. S. (1997). Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory. Concepts in Magnetic Resonance, 9(5), 299-336. doi:10.1002/(sici)1099-0534(1997)9:5<299::aid-cmr2>3.0.co;2-u es_ES
dc.description.references Matsukawa, S. (1999). Diffusion processes in polymer gels as studied by pulsed field-gradient spin-echo NMR spectroscopy. Progress in Polymer Science, 24(7), 995-1044. doi:10.1016/s0079-6700(99)00022-2 es_ES
dc.description.references Sen, P. N. (2004). Time-dependent diffusion coefficient as a probe of geometry. Concepts in Magnetic Resonance, 23A(1), 1-21. doi:10.1002/cmr.a.20017 es_ES
dc.description.references Pregosin, P. S. (2006). Ion pairing using PGSE diffusion methods. Progress in Nuclear Magnetic Resonance Spectroscopy, 49(3-4), 261-288. doi:10.1016/j.pnmrs.2006.09.001 es_ES
dc.description.references Kärger, J. (s. f.). Diffusion Measurements by NMR Techniques. Molecular Sieves, 85-133. doi:10.1007/3829_2007_019 es_ES
dc.description.references Walderhaug, H., Söderman, O., & Topgaard, D. (2010). Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Progress in Nuclear Magnetic Resonance Spectroscopy, 56(4), 406-425. doi:10.1016/j.pnmrs.2010.04.002 es_ES
dc.description.references Kidena, K., Ohkubo, T., Takimoto, N., & Ohira, A. (2010). PFG-NMR approach to determining the water transport mechanism in polymer electrolyte membranes conditioned at different temperatures. European Polymer Journal, 46(3), 450-455. doi:10.1016/j.eurpolymj.2009.12.012 es_ES
dc.description.references Guzmán, J., & Garrido, L. (2012). Determination of Carbon Dioxide Transport Coefficients in Liquids and Polymers by NMR Spectroscopy. The Journal of Physical Chemistry B, 116(20), 6050-6058. doi:10.1021/jp302037w es_ES
dc.description.references Williamson, M. J., Hubbard, H. V. S. A., & Ward, I. M. (1999). NMR measurements of self diffusion in polymer gel electrolytes. Polymer, 40(26), 7177-7185. doi:10.1016/s0032-3861(98)00859-3 es_ES
dc.description.references Hayamizu, K., Seki, S., Miyashiro, H., & Kobayashi, Y. (2006). Direct in Situ Observation of Dynamic Transport for Electrolyte Components by NMR Combined with Electrochemical Measurements. The Journal of Physical Chemistry B, 110(45), 22302-22305. doi:10.1021/jp065616a es_ES
dc.description.references Fögeling, J., Kunze, M., Schönhoff, M., & Stolwijk, N. A. (2010). Foreign-ion and self-ion diffusion in a crosslinked salt-in-polyether electrolyte. Physical Chemistry Chemical Physics, 12(26), 7148. doi:10.1039/b923894h es_ES
dc.description.references Kunze, M., Schulz, A., Wiemhöfer, H.-D., Eckert, H., & Schönhoff, M. (2010). Transport Mechanisms of Ions in Graft-Copolymer Based Salt-in-Polymer Electrolytes. Zeitschrift für Physikalische Chemie, 224(10-12), 1771-1793. doi:10.1524/zpch.2010.0036 es_ES
dc.description.references Schlayer, S., Pusch, A.-K., Pielenz, F., Beckert, S., Peksa, M., Horch, C., … Stallmach, F. (2012). X-Nuclei NMR Self-Diffusion Studies in Mesoporous Silica Foam and Microporous MOF CuBTC. Materials, 5(12), 617-633. doi:10.3390/ma5040617 es_ES
dc.description.references Bloch, F., Hansen, W. W., & Packard, M. (1946). The Nuclear Induction Experiment. Physical Review, 70(7-8), 474-485. doi:10.1103/physrev.70.474 es_ES
dc.description.references Chiarotti, G., & Giulotto, L. (1954). Proton Relaxation in Water. Physical Review, 93(6), 1241-1241. doi:10.1103/physrev.93.1241 es_ES
dc.description.references Polak, M., & Navon, G. (1974). Nuclear magnetic resonance studies of the interaction of molecular oxygen with organic compounds. The Journal of Physical Chemistry, 78(17), 1747-1750. doi:10.1021/j100610a014 es_ES
dc.description.references Nestle, N., Baumann, T., & Niessner, R. (2003). Oxygen determination in oxygen-supersaturated drinking waters by NMR relaxometry. Water Research, 37(14), 3361-3366. doi:10.1016/s0043-1354(03)00211-2 es_ES
dc.description.references Grucker, D. (2000). Oxymetry by magnetic resonance: applications to animal biology and medicine. Progress in Nuclear Magnetic Resonance Spectroscopy, 36(3), 241-270. doi:10.1016/s0079-6565(99)00022-9 es_ES
dc.description.references Mel’nichenko, N. A. (2008). The solubility of oxygen in sea water and solutions of electrolytes according to the pulse proton NMR data. Russian Journal of Physical Chemistry A, 82(9), 1533-1539. doi:10.1134/s0036024408090239 es_ES
dc.description.references Wilhelm, E., Battino, R., & Wilcock, R. J. (1977). Low-pressure solubility of gases in liquid water. Chemical Reviews, 77(2), 219-262. doi:10.1021/cr60306a003 es_ES
dc.description.references Battino, R., Rettich, T. R., & Tominaga, T. (1983). The Solubility of Oxygen and Ozone in Liquids. Journal of Physical and Chemical Reference Data, 12(2), 163-178. doi:10.1063/1.555680 es_ES
dc.description.references Garcia, H. E., & Gordon, L. I. (1992). Oxygen solubility in seawater: Better fitting equations. Limnology and Oceanography, 37(6), 1307-1312. doi:10.4319/lo.1992.37.6.1307 es_ES
dc.description.references Hamme, R. C., & Emerson, S. R. (2004). The solubility of neon, nitrogen and argon in distilled water and seawater. Deep Sea Research Part I: Oceanographic Research Papers, 51(11), 1517-1528. doi:10.1016/j.dsr.2004.06.009 es_ES
dc.description.references Millero, F. J., Huang, F., & Graham, T. B. (2003). Journal of Solution Chemistry, 32(6), 473-487. doi:10.1023/a:1025301314462 es_ES
dc.description.references Benson, B. B., Krause, D., & Peterson, M. A. (1979). The solubility and isotopic fractionation of gases in dilute aqueous solution. I. Oxygen. Journal of Solution Chemistry, 8(9), 655-690. doi:10.1007/bf01033696 es_ES
dc.description.references Gidrometeoizdat Leningrad, Russia 1975 es_ES
dc.description.references Delpuecha), J., Hamza, M. A., Serratrice, G., & Stébé, M. (1979). Fluorocarbons as oxygen carriers. I. An NMR study of oxygen solutions in hexafluorobenzene. The Journal of Chemical Physics, 70(6), 2680-2687. doi:10.1063/1.437853 es_ES
dc.description.references De Sainte Claire, P. (2009). Degradation of PEO in the Solid State: A Theoretical Kinetic Model. Macromolecules, 42(10), 3469-3482. doi:10.1021/ma802469u es_ES
dc.description.references Paterson, R., & Doran, P. (1986). A spray technique for the determination of membrane diffusion and distribution coefficients by the time-lag method: evaluated for electrolyte transport through charged and uncharged membranes. Journal of Membrane Science, 26(3), 289-299. doi:10.1016/s0376-7388(00)82113-4 es_ES
dc.description.references Yang, W.-H., Smolen, V. F., & Peppas, N. A. (1981). Oxygen permeability coefficients of polymers for hard and soft contact lens applications. Journal of Membrane Science, 9(1-2), 53-67. doi:10.1016/s0376-7388(00)85117-0 es_ES
dc.description.references Compañ, V., Román, J. S., Riande, E., Sørensen, T. S., Levenfeld, B., & Andrio, A. (1996). Oxygen transport through methacrylate-based hydrogels with potential biological capability. Biomaterials, 17(12), 1243-1249. doi:10.1016/0142-9612(96)84945-3 es_ES
dc.description.references Compañ, V., Andrio, A., López-Alemany, A., Riande, E., & Refojo, M. F. (2002). Oxygen permeability of hydrogel contact lenses with organosilicon moieties. Biomaterials, 23(13), 2767-2772. doi:10.1016/s0142-9612(02)00012-1 es_ES
dc.description.references Teng, C.-L., Hong, H., Kiihne, S., & Bryant, R. G. (2001). Molecular Oxygen Spin–Lattice Relaxation in Solutions Measured by Proton Magnetic Relaxation Dispersion. Journal of Magnetic Resonance, 148(1), 31-34. doi:10.1006/jmre.2000.2219 es_ES
dc.description.references Ben-Amotz, D., & Herschbach, D. R. (1990). Estimation of effective diameters for molecular fluids. The Journal of Physical Chemistry, 94(3), 1038-1047. doi:10.1021/j100366a003 es_ES
dc.description.references Barbieri, R., Quaglia, M., Delfini, M., & Brosio, E. (1998). Investigation of water dynamic behaviour in poly(HEMA) and poly(HEMA-co-DHPMA) hydrogels by proton T2 relaxation time and self-diffusion coefficient n.m.r. measurements. Polymer, 39(5), 1059-1066. doi:10.1016/s0032-3861(97)00403-5 es_ES
dc.description.references Gómez-Valdemoro, A., Trigo, M., Ibeas, S., García, F. C., Serna, F., & García, J. M. (2011). Acrylic copolymers with pendant 1,2,4-triazole moieties as colorimetric sensory materials and solid phases for the removal and sensing of cations from aqueous media. Journal of Polymer Science Part A: Polymer Chemistry, 49(17), 3817-3825. doi:10.1002/pola.24820 es_ES
dc.description.references Schult, K. A., & PAUL, D. R. (1997). Water sorption and transport in blends of poly (vinyl pyrrolidone) and polysulfone. Journal of Polymer Science Part B: Polymer Physics, 35(4), 655-674. doi:10.1002/(sici)1099-0488(199703)35:4<655::aid-polb13>3.0.co;2-f es_ES
dc.description.references Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. doi:10.1021/ac60214a047 es_ES
dc.description.references Steinier, J., Termonia, Y., & Deltour, J. (1972). Smoothing and differentiation of data by simplified least square procedure. Analytical Chemistry, 44(11), 1906-1909. doi:10.1021/ac60319a045 es_ES
dc.description.references Madden, H. H. (1978). Comments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data. Analytical Chemistry, 50(9), 1383-1386. doi:10.1021/ac50031a048 es_ES
dc.description.references Andreopoulos, A. G. (1989). Properties of poly(2-hydroxyethyl acrylate) networks. Biomaterials, 10(2), 101-104. doi:10.1016/0142-9612(89)90040-9 es_ES
dc.description.references Tomar, N., Tomar, M., Gulati, N., & Nagaich, U. (2012). pHEMA hydrogels: Devices for ocular drug delivery. International Journal of Health & Allied Sciences, 1(4), 224. doi:10.4103/2278-344x.107844 es_ES
dc.description.references Chan, K., & Gleason, K. K. (2005). Initiated Chemical Vapor Deposition of Linear and Cross-linked Poly(2-hydroxyethyl methacrylate) for Use as Thin-Film Hydrogels. Langmuir, 21(19), 8930-8939. doi:10.1021/la051004q es_ES
dc.description.references Compañ, V., Riande, E., Román, J. S., & Díaz-Calleja, R. (1993). Permeability of oxygen through membranes of poly(cyclohexyl acrylate). Polymer, 34(18), 3843-3847. doi:10.1016/0032-3861(93)90509-9 es_ES
dc.description.references Compañ, V., López-Alemany, A., Riande, E., & Refojo, M. F. (2004). Biological oxygen apparent transmissibility of hydrogel contact lenses with and without organosilicon moieties. Biomaterials, 25(2), 359-365. doi:10.1016/s0142-9612(03)00527-1 es_ES
dc.description.references Carpenter, J. H. (1966). NEW MEASUREMENTS OF OXYGEN SOLUBILITY IN PURE AND NATURAL WATER1. Limnology and Oceanography, 11(2), 264-277. doi:10.4319/lo.1966.11.2.0264 es_ES
dc.description.references Zandi, I., & Turner, C. D. (1970). The absorption of oxygen by dilute polymeric solutions Molecular diffusivity measurements. Chemical Engineering Science, 25(3), 517-528. doi:10.1016/0009-2509(70)80049-5 es_ES
dc.description.references Hung, G. W., & Dinius, R. H. (1972). Diffusivity of oxygen in electrolyte solutions. Journal of Chemical & Engineering Data, 17(4), 449-451. doi:10.1021/je60055a001 es_ES
dc.description.references TSE, F. C., & SANDALL, O. C. (1979). DIFFUSION COEFFICIENTS FOR OXYGEN AND CARBON DIOXIDE IN WATER AT 25°C BY UNSTEADY STATE DESORPTION FROM A QUIESCENT LIQUID. Chemical Engineering Communications, 3(3), 147-153. doi:10.1080/00986447908935860 es_ES
dc.description.references Baird, M. H. I., & Davidson, J. F. (1962). Annular jets—II. Chemical Engineering Science, 17(6), 473-480. doi:10.1016/0009-2509(62)85016-7 es_ES
dc.description.references Vivian, J. E., & King, C. J. (1964). Diffusivities of slightly soluble gases in water. AIChE Journal, 10(2), 220-221. doi:10.1002/aic.690100217 es_ES
dc.description.references Ferrell, R. T., & Himmelblau, D. M. (1967). Diffusion coefficients of nitrogen and oxygen in water. Journal of Chemical & Engineering Data, 12(1), 111-115. doi:10.1021/je60032a036 es_ES
dc.description.references Duda, J. L., & Vrentas, J. S. (1968). Laminar liquid jet diffusion studies. AIChE Journal, 14(2), 286-294. doi:10.1002/aic.690140215 es_ES
dc.description.references Han, P., & Bartels, D. M. (1996). Temperature Dependence of Oxygen Diffusion inH2O and D2O†. The Journal of Physical Chemistry, 100(13), 5597-5602. doi:10.1021/jp952903y es_ES
dc.description.references Muir, C. E., Lowry, B. J., & Balcom, B. J. (2011). Measuring diffusion using the differential form of Fick’s law and magnetic resonance imaging. New Journal of Physics, 13(1), 015005. doi:10.1088/1367-2630/13/1/015005 es_ES
dc.description.references Klett, M., Giesecke, M., Nyman, A., Hallberg, F., Lindström, R. W., Lindbergh, G., & Furó, I. (2012). Quantifying Mass Transport during Polarization in a Li Ion Battery Electrolyte by in Situ 7Li NMR Imaging. Journal of the American Chemical Society, 134(36), 14654-14657. doi:10.1021/ja305461j es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem