- -

Determination of Oxygen Permeability in Acrylic-Based Hydrogels by Proton NMR Spectroscopy and Imaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Determination of Oxygen Permeability in Acrylic-Based Hydrogels by Proton NMR Spectroscopy and Imaging

Mostrar el registro completo del ítem

Compañ Moreno, V.; Mollá Romano, S.; Vallejos, S.; Garcia, F.; Miguel Garcia, J.; Guzman, J.; Garrido, L. (2014). Determination of Oxygen Permeability in Acrylic-Based Hydrogels by Proton NMR Spectroscopy and Imaging. Macromolecular Chemistry and Physics. 215(7):624-637. https://doi.org/10.1002/macp.201300730

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59537

Ficheros en el ítem

Metadatos del ítem

Título: Determination of Oxygen Permeability in Acrylic-Based Hydrogels by Proton NMR Spectroscopy and Imaging
Autor: Compañ Moreno, Vicente Mollá Romano, Sergio Vallejos, Saul Garcia, Felix Miguel Garcia, Jose Guzman, Julio Garrido, Leoncio
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
Polymer network membranes with a high capacity for water absorption are obtained by radical polymerization of N-[2-(2-hydroxyethoxy)ethyl]methacrylamide (HEEMAM). The permeability, solubility, and diffusion coefficients ...[+]
Palabras clave: acrylic hydrogels , oxygen permeability , paramagnetism , proton NMR imaging , proton NMR spectroscopy
Derechos de uso: Cerrado
Fuente:
Macromolecular Chemistry and Physics. (issn: 1022-1352 ) (eissn: 1521-3935 )
DOI: 10.1002/macp.201300730
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/macp.201300730
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2011-22544/ES/NUEVOS MATERIALES POLIMEROS: APLICACION COMO MEMBRANAS SENSORAS CROMO Y FLUOROGENICAS. METODOLOGIA PARA TRABAJAR CON MOLECULAS ORGANICAS INSOLUBLES EN AGUA EN MEDIOS ACUOSOS./ /
info:eu-repo/grantAgreement/Junta de Castilla y León//BU232U13/ES/POLÍMEROS FUNCIONALES ORGÁNICOS E HÍBRIDOS COMO MATERIALES AVANZADOS PARA APLICACIONES EN EL ÁMBITO DE LA PROTECCIÓN, LA INDUSTRIA, LA BIOMEDICINA Y EL MEDIO AMBIENTE./
info:eu-repo/grantAgreement/MICINN//PI11%2F01436/ES/BIOINGENIERIA DE SISTEMAS NEUROACTIVOS MULTICOMPONENTE PARA REGENERACIÓN AXONAL EN LESIÓN MEDULAR/
info:eu-repo/grantAgreement/MICINN//MAT2011-29174-C02-02/ES/MATERIALES NANOESTRUCTURADOS MULTIFUNCIONALES DE BASE INORGANICA O POLIMERICA PARA APLICACIONES EN ENERGIA Y TECNOLOGIAS DE LA COMUNICACION/
Agradecimientos:
The authors gratefully acknowledge financial support provided by the Spanish Ministerio de Economia y Competitividad, projects MAT2011-29174-C02-02, FEDER MAT2011-22544, and FIS PI11/01436, and the Consejeria de Educacion-Junta ...[+]
Tipo: Artículo

References

Kazanskii, K. S., & Dubrovskii, S. A. (1992). Chemistry and physics of «agricultural» hydrogels. Advances in Polymer Science, 97-133. doi:10.1007/3-540-55109-3_3

Tsuruta, T. (1996). Contemporary topics in polymeric materials for biomedical applications. Advances in Polymer Science, 1-51. doi:10.1007/3-540-60484-7_1

Goda, T., & Ishihara, K. (2006). Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Review of Medical Devices, 3(2), 167-174. doi:10.1586/17434440.3.2.167 [+]
Kazanskii, K. S., & Dubrovskii, S. A. (1992). Chemistry and physics of «agricultural» hydrogels. Advances in Polymer Science, 97-133. doi:10.1007/3-540-55109-3_3

Tsuruta, T. (1996). Contemporary topics in polymeric materials for biomedical applications. Advances in Polymer Science, 1-51. doi:10.1007/3-540-60484-7_1

Goda, T., & Ishihara, K. (2006). Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Review of Medical Devices, 3(2), 167-174. doi:10.1586/17434440.3.2.167

McGlinchey, S. M., McCoy, C. P., Gorman, S. P., & Jones, D. S. (2008). Key biological issues in contact lens development. Expert Review of Medical Devices, 5(5), 581-590. doi:10.1586/17434440.5.5.581

Gates, G., Harmon, J. ., Ors, J., & Benz, P. (2003). Intra and intermolecular relaxations 2,3-dihydroxypropyl methacrylate and 2-hydroxyethyl methacrylate hydrogels. Polymer, 44(1), 207-214. doi:10.1016/s0032-3861(02)00725-5

Compañ, V., Tiemblo, P., García, F., García, J. M., Guzmán, J., & Riande, E. (2005). A potentiostatic study of oxygen transport through poly(2-ethoxyethyl methacrylate-co-2,3-dihydroxypropylmethacrylate) hydrogel membranes. Biomaterials, 26(18), 3783-3791. doi:10.1016/j.biomaterials.2004.09.061

Moszner, N., & Salz, U. (2007). Recent Developments of New Components for Dental Adhesives and Composites. Macromolecular Materials and Engineering, 292(3), 245-271. doi:10.1002/mame.200600414

Erdodi, G., & Kennedy, J. P. (2005). Water-swollen highly oxygen permeable membranes: Analytical technique and syntheses. Journal of Polymer Science Part A: Polymer Chemistry, 43(16), 3491-3501. doi:10.1002/pola.20791

Chhabra, M., Prausnitz, J. M., & Radke, C. J. (2008). Polarographic Method for Measuring Oxygen Diffusivity and Solubility in Water-Saturated Polymer Films:  Application to Hypertransmissible Soft Contact Lenses. Industrial & Engineering Chemistry Research, 47(10), 3540-3550. doi:10.1021/ie071071a

Hwang, S.-T., Tang, T. E. S., & Kammermeyer, K. (1971). Transport of dissolved oxygen through silicone rubber membrane. Journal of Macromolecular Science, Part B, 5(1), 1-10. doi:10.1080/00222347108212517

Refojo, M. F., & Leong, F.-L. (1978). Water-dissolved-oxygen permeability coefficients of hydrogel contact lenses and boundary layer effects. Journal of Membrane Science, 4, 415-426. doi:10.1016/s0376-7388(00)83317-7

Brennan, N. A., Efron, N., & Holden, B. A. (1986). Oxygen permeability of hard gas permeable contact lens materials. Clinical and Experimental Optometry, 69(3), 82-89. doi:10.1111/j.1444-0938.1986.tb06794.x

Compañ, V., Andrio, A., López-Alemany, A., & Riande, E. (1999). New method to determine the true transmissibilities and permeabilities of oxygen in hydrogel membranes. Polymer, 40(5), 1153-1158. doi:10.1016/s0032-3861(98)00348-6

Compa�, V., L�pez, M. L., Andrio, A., L�pez-Alemany, A., & Refojo, M. F. (1999). Determination of the oxygen transmissibility and permeability of hydrogel contact lenses. Journal of Applied Polymer Science, 72(3), 321-327. doi:10.1002/(sici)1097-4628(19990418)72:3<321::aid-app2>3.0.co;2-l

Compañ, V. (1998). A potentiostatic study of oxygen transmissibility and permeability through hydrogel membranes. Biomaterials, 19(23), 2139-2145. doi:10.1016/s0142-9612(98)00113-6

Park, J.-Y., Yoon, S. J., & Lee, H. (2003). Effect of Steric Hindrance on Carbon Dioxide Absorption into New Amine Solutions:  Thermodynamic and Spectroscopic Verification through Solubility and NMR Analysis. Environmental Science & Technology, 37(8), 1670-1675. doi:10.1021/es0260519

Tomizaki, K., Kanakubo, M., Nanjo, H., Shimizu, S., Onoda, M., & Fujioka, Y. (2010). 13C NMR Studies on the Dissolution Mechanisms of Carbon Dioxide in Amine-Containing Aqueous Solvents at High Pressures toward an Integrated Coal Gasification Combined Cycle−Carbon Capture and Storage Process. Industrial & Engineering Chemistry Research, 49(3), 1222-1228. doi:10.1021/ie900870w

Autret, G., Liger-Belair, G., Nuzillard, J.-M., Parmentier, M., Montreynaud, A. D. de, Jeandet, P., … Beloeil, J.-C. (2005). Use of magnetic resonance spectroscopy for the investigation of the CO2 dissolved in champagne and sparkling wines: a nondestructive and unintrusive method. Analytica Chimica Acta, 535(1-2), 73-78. doi:10.1016/j.aca.2004.11.054

Seto, T., Mashimo, T., Yoshiya, I., Kanashiro, M., & Taniguchi, Y. (1992). The solubility of volatile anaesthetics in water at 25.0°C using 19F NMR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 10(1), 1-7. doi:10.1016/0731-7085(92)80003-6

Segebarth, N., Aïtjeddig, L., Locci, E., Bartik, K., & Luhmer, M. (2006). Novel Method for the Measurement of Xenon Gas Solubility Using129Xe NMR Spectroscopy. The Journal of Physical Chemistry A, 110(37), 10770-10776. doi:10.1021/jp062679k

Price, W. S. (1997). Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory. Concepts in Magnetic Resonance, 9(5), 299-336. doi:10.1002/(sici)1099-0534(1997)9:5<299::aid-cmr2>3.0.co;2-u

Matsukawa, S. (1999). Diffusion processes in polymer gels as studied by pulsed field-gradient spin-echo NMR spectroscopy. Progress in Polymer Science, 24(7), 995-1044. doi:10.1016/s0079-6700(99)00022-2

Sen, P. N. (2004). Time-dependent diffusion coefficient as a probe of geometry. Concepts in Magnetic Resonance, 23A(1), 1-21. doi:10.1002/cmr.a.20017

Pregosin, P. S. (2006). Ion pairing using PGSE diffusion methods. Progress in Nuclear Magnetic Resonance Spectroscopy, 49(3-4), 261-288. doi:10.1016/j.pnmrs.2006.09.001

Kärger, J. (s. f.). Diffusion Measurements by NMR Techniques. Molecular Sieves, 85-133. doi:10.1007/3829_2007_019

Walderhaug, H., Söderman, O., & Topgaard, D. (2010). Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Progress in Nuclear Magnetic Resonance Spectroscopy, 56(4), 406-425. doi:10.1016/j.pnmrs.2010.04.002

Kidena, K., Ohkubo, T., Takimoto, N., & Ohira, A. (2010). PFG-NMR approach to determining the water transport mechanism in polymer electrolyte membranes conditioned at different temperatures. European Polymer Journal, 46(3), 450-455. doi:10.1016/j.eurpolymj.2009.12.012

Guzmán, J., & Garrido, L. (2012). Determination of Carbon Dioxide Transport Coefficients in Liquids and Polymers by NMR Spectroscopy. The Journal of Physical Chemistry B, 116(20), 6050-6058. doi:10.1021/jp302037w

Williamson, M. J., Hubbard, H. V. S. A., & Ward, I. M. (1999). NMR measurements of self diffusion in polymer gel electrolytes. Polymer, 40(26), 7177-7185. doi:10.1016/s0032-3861(98)00859-3

Hayamizu, K., Seki, S., Miyashiro, H., & Kobayashi, Y. (2006). Direct in Situ Observation of Dynamic Transport for Electrolyte Components by NMR Combined with Electrochemical Measurements. The Journal of Physical Chemistry B, 110(45), 22302-22305. doi:10.1021/jp065616a

Fögeling, J., Kunze, M., Schönhoff, M., & Stolwijk, N. A. (2010). Foreign-ion and self-ion diffusion in a crosslinked salt-in-polyether electrolyte. Physical Chemistry Chemical Physics, 12(26), 7148. doi:10.1039/b923894h

Kunze, M., Schulz, A., Wiemhöfer, H.-D., Eckert, H., & Schönhoff, M. (2010). Transport Mechanisms of Ions in Graft-Copolymer Based Salt-in-Polymer Electrolytes. Zeitschrift für Physikalische Chemie, 224(10-12), 1771-1793. doi:10.1524/zpch.2010.0036

Schlayer, S., Pusch, A.-K., Pielenz, F., Beckert, S., Peksa, M., Horch, C., … Stallmach, F. (2012). X-Nuclei NMR Self-Diffusion Studies in Mesoporous Silica Foam and Microporous MOF CuBTC. Materials, 5(12), 617-633. doi:10.3390/ma5040617

Bloch, F., Hansen, W. W., & Packard, M. (1946). The Nuclear Induction Experiment. Physical Review, 70(7-8), 474-485. doi:10.1103/physrev.70.474

Chiarotti, G., & Giulotto, L. (1954). Proton Relaxation in Water. Physical Review, 93(6), 1241-1241. doi:10.1103/physrev.93.1241

Polak, M., & Navon, G. (1974). Nuclear magnetic resonance studies of the interaction of molecular oxygen with organic compounds. The Journal of Physical Chemistry, 78(17), 1747-1750. doi:10.1021/j100610a014

Nestle, N., Baumann, T., & Niessner, R. (2003). Oxygen determination in oxygen-supersaturated drinking waters by NMR relaxometry. Water Research, 37(14), 3361-3366. doi:10.1016/s0043-1354(03)00211-2

Grucker, D. (2000). Oxymetry by magnetic resonance: applications to animal biology and medicine. Progress in Nuclear Magnetic Resonance Spectroscopy, 36(3), 241-270. doi:10.1016/s0079-6565(99)00022-9

Mel’nichenko, N. A. (2008). The solubility of oxygen in sea water and solutions of electrolytes according to the pulse proton NMR data. Russian Journal of Physical Chemistry A, 82(9), 1533-1539. doi:10.1134/s0036024408090239

Wilhelm, E., Battino, R., & Wilcock, R. J. (1977). Low-pressure solubility of gases in liquid water. Chemical Reviews, 77(2), 219-262. doi:10.1021/cr60306a003

Battino, R., Rettich, T. R., & Tominaga, T. (1983). The Solubility of Oxygen and Ozone in Liquids. Journal of Physical and Chemical Reference Data, 12(2), 163-178. doi:10.1063/1.555680

Garcia, H. E., & Gordon, L. I. (1992). Oxygen solubility in seawater: Better fitting equations. Limnology and Oceanography, 37(6), 1307-1312. doi:10.4319/lo.1992.37.6.1307

Hamme, R. C., & Emerson, S. R. (2004). The solubility of neon, nitrogen and argon in distilled water and seawater. Deep Sea Research Part I: Oceanographic Research Papers, 51(11), 1517-1528. doi:10.1016/j.dsr.2004.06.009

Millero, F. J., Huang, F., & Graham, T. B. (2003). Journal of Solution Chemistry, 32(6), 473-487. doi:10.1023/a:1025301314462

Benson, B. B., Krause, D., & Peterson, M. A. (1979). The solubility and isotopic fractionation of gases in dilute aqueous solution. I. Oxygen. Journal of Solution Chemistry, 8(9), 655-690. doi:10.1007/bf01033696

Gidrometeoizdat Leningrad, Russia 1975

Delpuecha), J., Hamza, M. A., Serratrice, G., & Stébé, M. (1979). Fluorocarbons as oxygen carriers. I. An NMR study of oxygen solutions in hexafluorobenzene. The Journal of Chemical Physics, 70(6), 2680-2687. doi:10.1063/1.437853

De Sainte Claire, P. (2009). Degradation of PEO in the Solid State: A Theoretical Kinetic Model. Macromolecules, 42(10), 3469-3482. doi:10.1021/ma802469u

Paterson, R., & Doran, P. (1986). A spray technique for the determination of membrane diffusion and distribution coefficients by the time-lag method: evaluated for electrolyte transport through charged and uncharged membranes. Journal of Membrane Science, 26(3), 289-299. doi:10.1016/s0376-7388(00)82113-4

Yang, W.-H., Smolen, V. F., & Peppas, N. A. (1981). Oxygen permeability coefficients of polymers for hard and soft contact lens applications. Journal of Membrane Science, 9(1-2), 53-67. doi:10.1016/s0376-7388(00)85117-0

Compañ, V., Román, J. S., Riande, E., Sørensen, T. S., Levenfeld, B., & Andrio, A. (1996). Oxygen transport through methacrylate-based hydrogels with potential biological capability. Biomaterials, 17(12), 1243-1249. doi:10.1016/0142-9612(96)84945-3

Compañ, V., Andrio, A., López-Alemany, A., Riande, E., & Refojo, M. F. (2002). Oxygen permeability of hydrogel contact lenses with organosilicon moieties. Biomaterials, 23(13), 2767-2772. doi:10.1016/s0142-9612(02)00012-1

Teng, C.-L., Hong, H., Kiihne, S., & Bryant, R. G. (2001). Molecular Oxygen Spin–Lattice Relaxation in Solutions Measured by Proton Magnetic Relaxation Dispersion. Journal of Magnetic Resonance, 148(1), 31-34. doi:10.1006/jmre.2000.2219

Ben-Amotz, D., & Herschbach, D. R. (1990). Estimation of effective diameters for molecular fluids. The Journal of Physical Chemistry, 94(3), 1038-1047. doi:10.1021/j100366a003

Barbieri, R., Quaglia, M., Delfini, M., & Brosio, E. (1998). Investigation of water dynamic behaviour in poly(HEMA) and poly(HEMA-co-DHPMA) hydrogels by proton T2 relaxation time and self-diffusion coefficient n.m.r. measurements. Polymer, 39(5), 1059-1066. doi:10.1016/s0032-3861(97)00403-5

Gómez-Valdemoro, A., Trigo, M., Ibeas, S., García, F. C., Serna, F., & García, J. M. (2011). Acrylic copolymers with pendant 1,2,4-triazole moieties as colorimetric sensory materials and solid phases for the removal and sensing of cations from aqueous media. Journal of Polymer Science Part A: Polymer Chemistry, 49(17), 3817-3825. doi:10.1002/pola.24820

Schult, K. A., & PAUL, D. R. (1997). Water sorption and transport in blends of poly (vinyl pyrrolidone) and polysulfone. Journal of Polymer Science Part B: Polymer Physics, 35(4), 655-674. doi:10.1002/(sici)1099-0488(199703)35:4<655::aid-polb13>3.0.co;2-f

Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. doi:10.1021/ac60214a047

Steinier, J., Termonia, Y., & Deltour, J. (1972). Smoothing and differentiation of data by simplified least square procedure. Analytical Chemistry, 44(11), 1906-1909. doi:10.1021/ac60319a045

Madden, H. H. (1978). Comments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data. Analytical Chemistry, 50(9), 1383-1386. doi:10.1021/ac50031a048

Andreopoulos, A. G. (1989). Properties of poly(2-hydroxyethyl acrylate) networks. Biomaterials, 10(2), 101-104. doi:10.1016/0142-9612(89)90040-9

Tomar, N., Tomar, M., Gulati, N., & Nagaich, U. (2012). pHEMA hydrogels: Devices for ocular drug delivery. International Journal of Health & Allied Sciences, 1(4), 224. doi:10.4103/2278-344x.107844

Chan, K., & Gleason, K. K. (2005). Initiated Chemical Vapor Deposition of Linear and Cross-linked Poly(2-hydroxyethyl methacrylate) for Use as Thin-Film Hydrogels. Langmuir, 21(19), 8930-8939. doi:10.1021/la051004q

Compañ, V., Riande, E., Román, J. S., & Díaz-Calleja, R. (1993). Permeability of oxygen through membranes of poly(cyclohexyl acrylate). Polymer, 34(18), 3843-3847. doi:10.1016/0032-3861(93)90509-9

Compañ, V., López-Alemany, A., Riande, E., & Refojo, M. F. (2004). Biological oxygen apparent transmissibility of hydrogel contact lenses with and without organosilicon moieties. Biomaterials, 25(2), 359-365. doi:10.1016/s0142-9612(03)00527-1

Carpenter, J. H. (1966). NEW MEASUREMENTS OF OXYGEN SOLUBILITY IN PURE AND NATURAL WATER1. Limnology and Oceanography, 11(2), 264-277. doi:10.4319/lo.1966.11.2.0264

Zandi, I., & Turner, C. D. (1970). The absorption of oxygen by dilute polymeric solutions Molecular diffusivity measurements. Chemical Engineering Science, 25(3), 517-528. doi:10.1016/0009-2509(70)80049-5

Hung, G. W., & Dinius, R. H. (1972). Diffusivity of oxygen in electrolyte solutions. Journal of Chemical & Engineering Data, 17(4), 449-451. doi:10.1021/je60055a001

TSE, F. C., & SANDALL, O. C. (1979). DIFFUSION COEFFICIENTS FOR OXYGEN AND CARBON DIOXIDE IN WATER AT 25°C BY UNSTEADY STATE DESORPTION FROM A QUIESCENT LIQUID. Chemical Engineering Communications, 3(3), 147-153. doi:10.1080/00986447908935860

Baird, M. H. I., & Davidson, J. F. (1962). Annular jets—II. Chemical Engineering Science, 17(6), 473-480. doi:10.1016/0009-2509(62)85016-7

Vivian, J. E., & King, C. J. (1964). Diffusivities of slightly soluble gases in water. AIChE Journal, 10(2), 220-221. doi:10.1002/aic.690100217

Ferrell, R. T., & Himmelblau, D. M. (1967). Diffusion coefficients of nitrogen and oxygen in water. Journal of Chemical & Engineering Data, 12(1), 111-115. doi:10.1021/je60032a036

Duda, J. L., & Vrentas, J. S. (1968). Laminar liquid jet diffusion studies. AIChE Journal, 14(2), 286-294. doi:10.1002/aic.690140215

Han, P., & Bartels, D. M. (1996). Temperature Dependence of Oxygen Diffusion inH2O and D2O†. The Journal of Physical Chemistry, 100(13), 5597-5602. doi:10.1021/jp952903y

Muir, C. E., Lowry, B. J., & Balcom, B. J. (2011). Measuring diffusion using the differential form of Fick’s law and magnetic resonance imaging. New Journal of Physics, 13(1), 015005. doi:10.1088/1367-2630/13/1/015005

Klett, M., Giesecke, M., Nyman, A., Hallberg, F., Lindström, R. W., Lindbergh, G., & Furó, I. (2012). Quantifying Mass Transport during Polarization in a Li Ion Battery Electrolyte by in Situ 7Li NMR Imaging. Journal of the American Chemical Society, 134(36), 14654-14657. doi:10.1021/ja305461j

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem