- -

Generation of realistic atrial to atrial interval series during atrial fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generation of realistic atrial to atrial interval series during atrial fibrillation

Mostrar el registro completo del ítem

Climent, AM.; Atienza, F.; Millet Roig, J.; Guillem Sánchez, MS. (2011). Generation of realistic atrial to atrial interval series during atrial fibrillation. Medical and Biological Engineering and Computing. 49(11):1261-1268. doi:10.1007/s11517-011-0823-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59568

Ficheros en el ítem

Metadatos del ítem

Título: Generation of realistic atrial to atrial interval series during atrial fibrillation
Autor: Climent, Andreu M. Atienza, Felipe Millet Roig, José Guillem Sánchez, María Salud
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
The aim of the this study is to describe a methodological architecture for the generation of realistic atrial to atrial activation intervals (AA) during atrial fibrillation (AF), which can be used to investigate the role ...[+]
Palabras clave: Atrioventricular conduction , Pearson type IV , Rate control , Statistical modeling
Derechos de uso: Cerrado
Fuente:
Medical and Biological Engineering and Computing. (issn: 0140-0118 )
DOI: 10.1007/s11517-011-0823-2
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s11517-011-0823-2
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2009-13939/ES/Desarrollo De Tecnicas Avanzadas De Analisis Y Caracterizacion De Mapas De Propagacion Para La Ayuda Al Diagnostico Electrocardiografico/
Agradecimientos:
This research was supported by Spanish Ministry of Education and Science under TEC2009-13939; the Universitat Politecnica de Valencia through its research initiative program; and the Spanish Society of Cardiology.
Tipo: Artículo

References

Chen S, Nie H, Ayers-Glassey B (2008) Lognormal sum approximation with a variant of type IV Pearson distribution. IEEE Commun Lett 12:630–632

Chorro FJ, Kirchhof CJHJ, Brugada J, Allessie MA (1990) Ventricular response during irregular atrial-pacing and atrial-fibrillation. Am J Physiol Heart Circ Physiol 259:H1015–H1021

Chorro FJ, Sanchis J, Lopez-Merino V, Such L, Avellana JA, Valentin V (1991) Effects of atrial impulse timing on AV concealed conduction in the rabbit heart. Pacing Clin Electrophysiol 14(5 Pt 1):842–853 [+]
Chen S, Nie H, Ayers-Glassey B (2008) Lognormal sum approximation with a variant of type IV Pearson distribution. IEEE Commun Lett 12:630–632

Chorro FJ, Kirchhof CJHJ, Brugada J, Allessie MA (1990) Ventricular response during irregular atrial-pacing and atrial-fibrillation. Am J Physiol Heart Circ Physiol 259:H1015–H1021

Chorro FJ, Sanchis J, Lopez-Merino V, Such L, Avellana JA, Valentin V (1991) Effects of atrial impulse timing on AV concealed conduction in the rabbit heart. Pacing Clin Electrophysiol 14(5 Pt 1):842–853

Climent AM, Guillem MS, Husser D, Castells F, Millet J, Bollmann A (2009) Poincare surface profiles of RR intervals. A novel noninvasive method for the evaluation of preferential AV nodal conduction during atrial fibrillation. IEEE Trans Biomed Eng 56(2):433–442

Climent AM, Guillem MS, Husser D, Castells F, Millet J, Bollmann A (2010) Role of the atrial rate as a factor modulating ventricular response during atrial fibrillation. Pacing Clin Electrophysiol 33:1510–1517

Climent AM, Guillem MS, Zhang Y, Millet J, Mazgalev T (2011) Functional mathematical model of dual pathway AV nodal conductions. Am J Physiol Heart Circ Physiol 300(4):H1393–H1401

Cohen RJ, Berger RD (1983) A quantitative model for the ventricular response during atrial-fibrillation. IEEE Trans Biomed Eng 30:769–781

Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New York

Devroye L (1989) On random variate generation when only moments or Fourier coefficients are known. Math Comput Simul 31:71–89

Faes L, Nollo G, Antolini R, Gaita F, Ravelli F (2002) A method for quantifying atrial fibrillation organization based on wave-morphology similarity. IEEE Trans Biomed Eng 49:1504–1513

Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation. Europace 8:651–745

Garrigue S, Mowrey KA, Fahy G, Tchou PJ, Mazgalev TN (1999) Atrioventricular nodal conduction during atrial fibrillation: role of atrial input modification. Circulation 99:2323–2333

Garrigue S, Tchou PJ, Mazgalev TN (1999) Role of the differential bombardment of atrial inputs to the atrioventricular node as a factor influencing ventricular rate during high atrial rate. Cardiovasc Res 44:344–355

Gerstenfeld EP, Sahakian AV, Swiryn S (1992) Evidence for transient linking of atrial excitation during atrial fibrillation in humans. Circulation 86:375–382

Heethaar RM, Denier van der Gon JJ, Meijler FL (1973) Mathematical model of A-V conduction in the rat heart. Cardiovasc Res 7:105–114

Heethaar RM, van der Gon JJ, Meijler FL (1973) Interpretation of some properties of A-V conduction with the help of analog simulation. Eur J Cardiol 1:87–93

Heinrich J (2004) A guide to the Pearson type IV distribution. http://www-cdf.fnal.gov

Inada S, Hancox JC, Zhang H, Boyett MR (2009) One-dimensional mathematical model of the atrioventricular node including atrio-nodal, nodal, and nodal-his cells. Biophys J 97:2117–2127

Izrailev FM, Krokhin AA, Makarov NM, Usatenko OV (2007) Generation of correlated binary sequences from white noise. Phys Rev E 76:1–4

Jorgensen P, Schafer C, Guerra PG, Talajic M, Nattel S, Glass L (2002) A mathematical model of human atrioventricular nodal function incorporating concealed conduction. Bull Math Biol 64:1083–1099

Kwan R, Leung C (2007) On the applicability of the Pearson method for approximating distributions in wireless communications. IEEE Trans Commun 55:2065–2069

Lian J, Mussig D, Lang V (2006) Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing. IEEE Trans Biomed Eng 53:1512–1520

Makse HA, Havlin S, Schwartz M, Stanley HE (1996) Method for generating long-range correlations for large systems. Phys Rev E 53:5445–5449

Mangin L, Vinet A, Page P, Glass L (2005) Effects of antiarrhythmic drug therapy on atrioventricular nodal function during atrial fibrillation in humans. Europace 7(Suppl 2):71–82

Mazgalev TN, Garrigue S, Mowrey KA, Yamanouchi Y, Tchou PJ (1999) Autonomic modification of the atrioventricular node during atrial fibrillation: role in the slowing of ventricular rate. Circulation 99:2806–2814

Meijler FL, Jalife J, Beaumont J, Vaidya D (1996) AV nodal function during atrial fibrillation: the role of electrotonic modulation of propagation. J Cardiovasc Electrophysiol 7:843–861

Meurling CJ, Waktare JE, Holmqvist F, Hedman A, Camm AJ, Olsson SB, Malik M (2001) Diurnal variations of the dominant cycle length of chronic atrial fibrillation. Am J Physiol Heart Circ Physiol 280:H401–H406

Nagahara Y (2004) A method of simulating multivariate nonnormal distributions by the Pearson distribution system and estimation. Comput Stat Data Anal 47:1–29

Nie H, Chen SH (2007) Lognormal sum approximation with type IV Pearson distribution. IEEE Commun Lett 11:790–792

Pearson K (1895) Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philos Trans R Soc Lond A 186:343–414

Richter U, Bollmann A, Husser D, Stridh M (2009) Right atrial organization and wavefront analysis in atrial fibrillation. Med Biol Eng Comput 47:1237–1246

Sandberg F, Bollmann A, Husser D, Stridh M, Sornmo L (2010) Circadian variation in dominant atrial fibrillation frequency in persistent atrial fibrillation. Physiol Meas 31:531–542

Schoenwald AT, Sahakian AV, Sih HJ, Swiryn S (1998) Further observations of “linking” of atrial excitation during clinical atrial fibrillation. Pacing Clin Electrophysiol 21:25–34

Tadros R, Billette J (2009) Rate-dependent AV nodal refractoriness: a new functional framework based on concurrent effects of basic and pretest cycle length. Am J Physiol Heart Circ Physiol 297:H2136–H2143

Tadros R, Lavallee M, Billette J (2006) Unified rate-dependent atrioventricular nodal function: consistent recovery and fatigue properties revealed with S1S2S3 protocols and different recovery indexes. Heart Rhythm 3:959–966

Tadros R, Lavallee M, Billette J (2007) Dependence of AV nodal function curves on the selected recovery index: pivotal role of pretest conduction time. J Cardiovasc Electrophysiol 18:978–984

Talajic M, Papadatos D, Villemaire C, Glass L, Nattel S (1991) A unified model of atrioventricular nodal conduction predicts dynamic changes in Wenckebach periodicity. Circ Res 68:1280–1293

Vaya C, Rieta JJ (2009) Time and frequency series combination for non-invasive regularity analysis of atrial fibrillation. Med Biol Eng Comput 47:687–696

Zeng W, Glass L (1996) Statistical properties of heartbeat intervals during atrial fibrillation. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 54:1779–1784

Zhang YH, Mazgalev TN (2004) Ventricular rate control during atrial fibrillation and AV node modifications: past, present, and future. Pacing Clin Electrophysiol 27:382–393

Zhang QT, Song SH (2008) A systematic procedure for accurately approximating lognormal-sum distributions. IEEE Trans Veh Technol 57:663–666

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem