- -

Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory

Show full item record

Moreno Cano, R.; Page Del Pozo, AF.; Riera Guasp, J.; Hueso Pagoaga, JL. (2014). Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory. European Journal of Physics. 35(1):15005-15017. doi:10.1088/0143-0807/35/1/015005

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59660

Files in this item

Item Metadata

Title: Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory
Author: Moreno Cano, Rafael Page Del Pozo, Alvaro Felipe Riera Guasp, Jaime Hueso Pagoaga, José Luís
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Issued date:
Abstract:
In this paper, we present a simple experiment to introduce the nonlinear behaviour of oscillating systems in the undergraduate physics laboratory. The transverse oscillations of a spring allow reproduction of three totally ...[+]
Subjects: Nonlinear , Oscillation , Video analysys
Copyrigths: Cerrado
Source:
European Journal of Physics. (issn: 0143-0807 )
DOI: 10.1088/0143-0807/35/1/015005
Publisher:
European Physical Society
Publisher version: http://dx.doi.org/10.1088/0143-0807/35/1/015005
Type: Artículo

References

Mohazzabi, P. (2004). Theory and examples of intrinsically nonlinear oscillators. American Journal of Physics, 72(4), 492-498. doi:10.1119/1.1624114

Zelichenko, V. M., & Larionov, V. V. (2007). Methodological aspects of analysis of nonlinear effects in the course on general physics. Russian Physics Journal, 50(8), 812-820. doi:10.1007/s11182-007-0122-4

Grosu, I., & Ursu, D. (1986). Linear and nonlinear oscillations: an experimental for students. European Journal of Physics, 7(2), 91-94. doi:10.1088/0143-0807/7/2/003 [+]
Mohazzabi, P. (2004). Theory and examples of intrinsically nonlinear oscillators. American Journal of Physics, 72(4), 492-498. doi:10.1119/1.1624114

Zelichenko, V. M., & Larionov, V. V. (2007). Methodological aspects of analysis of nonlinear effects in the course on general physics. Russian Physics Journal, 50(8), 812-820. doi:10.1007/s11182-007-0122-4

Grosu, I., & Ursu, D. (1986). Linear and nonlinear oscillations: an experimental for students. European Journal of Physics, 7(2), 91-94. doi:10.1088/0143-0807/7/2/003

Cadmus, R. R. (1990). A video technique to facilitate the visualization of physical phenomena. American Journal of Physics, 58(4), 397-399. doi:10.1119/1.16483

Cross, R. (2002). Measurements of the horizontal coefficient of restitution for a superball and a tennis ball. American Journal of Physics, 70(5), 482-489. doi:10.1119/1.1450571

Riera, J., Monsoriu, J. A., Giménez, M. H., Hueso, J. L., & Torregrosa, J. R. (2003). Using image recognition to automate video analysis of physical processes. American Journal of Physics, 71(10), 1075-1079. doi:10.1119/1.1578066

Page, A., Moreno, R., Candelas, P., & Belmar, F. (2008). The accuracy of webcams in 2D motion analysis: sources of error and their control. European Journal of Physics, 29(4), 857-870. doi:10.1088/0143-0807/29/4/017

Page, A., Candelas, P., & Belmar, F. (2006). On the use of local fitting techniques for the analysis of physical dynamic systems. European Journal of Physics, 27(2), 273-279. doi:10.1088/0143-0807/27/2/010

Qing-Xin, Y., & Pei, D. (2009). Comment on ‘Approximation for a large-angle simple pendulum period’. European Journal of Physics, 30(5), L79-L82. doi:10.1088/0143-0807/30/5/l05

Johannessen, K. (2010). An approximate solution to the equation of motion for large-angle oscillations of the simple pendulum with initial velocity. European Journal of Physics, 31(3), 511-518. doi:10.1088/0143-0807/31/3/008

Beléndez, A., Álvarez, M. L., Fernández, E., & Pascual, I. (2009). Linearization of conservative nonlinear oscillators. European Journal of Physics, 30(2), 259-270. doi:10.1088/0143-0807/30/2/004

Cromer, A. (1995). Many oscillations of a rigid rod. American Journal of Physics, 63(2), 112-121. doi:10.1119/1.17966

Beléndez, A., Hernández, A., Márquez, A., Beléndez, T., & Neipp, C. (2006). Analytical approximations for the period of a nonlinear pendulum. European Journal of Physics, 27(3), 539-551. doi:10.1088/0143-0807/27/3/008

Kraftmakher, Y. (2007). Experiments with a magnetically controlled pendulum. European Journal of Physics, 28(5), 1007-1020. doi:10.1088/0143-0807/28/5/023

Kewei, L., Jiahuang, L., Yang, K. Z., Liang, S. Y. W., & Juan, J. W. S. (2011). The vertical oscillations of coupled magnets. European Journal of Physics, 32(4), S1-S14. doi:10.1088/0143-0807/32/4/s01

Ladera, C. L., & Donoso, G. (2012). Anharmonic oscillations of a spring–magnet system inside a magnetic coil. European Journal of Physics, 33(5), 1259-1270. doi:10.1088/0143-0807/33/5/1259

Whineray, S. (1991). A cube-law air track oscillator. European Journal of Physics, 12(2), 90-95. doi:10.1088/0143-0807/12/2/008

Detcheva, V., & Spassov, V. (1993). A simple nonlinear oscillator: analytical and numerical solution. Physics Education, 28(1), 39-42. doi:10.1088/0031-9120/28/1/007

Filipponi, A., & Cavicchia, D. R. (2011). Anharmonic dynamics of a mass O-spring oscillator. American Journal of Physics, 79(7), 730-735. doi:10.1119/1.3579129

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record