- -

Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moreno Cano, Rafael es_ES
dc.contributor.author Page Del Pozo, Alvaro Felipe es_ES
dc.contributor.author Riera Guasp, Jaime es_ES
dc.contributor.author Hueso Pagoaga, José Luís es_ES
dc.date.accessioned 2016-01-11T12:56:09Z
dc.date.available 2016-01-11T12:56:09Z
dc.date.issued 2014-01
dc.identifier.issn 0143-0807
dc.identifier.uri http://hdl.handle.net/10251/59660
dc.description.abstract In this paper, we present a simple experiment to introduce the nonlinear behaviour of oscillating systems in the undergraduate physics laboratory. The transverse oscillations of a spring allow reproduction of three totally different scenarios: linear oscillations, nonlinear oscillations reducible to linear for small displacements, and intrinsically nonlinear oscillations. The chosen approach consists of measuring the displacements using video photogrammetry and computing the velocities and the accelerations by means of a numerical differentiation algorithm. In this way, one can directly check the differential equation of the motion without having to integrate it, or perform an experimental study of the potential energy in each of the analysed scenarios. This experiment allows first year students to reflect on the consequences and the limits of the linearity assumption for small displacements that is so often made in technical studies. es_ES
dc.language Inglés es_ES
dc.publisher European Physical Society es_ES
dc.relation.ispartof European Journal of Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear es_ES
dc.subject Oscillation es_ES
dc.subject Video analysys es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0143-0807/35/1/015005
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Moreno Cano, R.; Page Del Pozo, AF.; Riera Guasp, J.; Hueso Pagoaga, JL. (2014). Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory. European Journal of Physics. 35(1):15005-15017. doi:10.1088/0143-0807/35/1/015005 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0143-0807/35/1/015005 es_ES
dc.description.upvformatpinicio 15005 es_ES
dc.description.upvformatpfin 15017 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 271876 es_ES
dc.description.references Mohazzabi, P. (2004). Theory and examples of intrinsically nonlinear oscillators. American Journal of Physics, 72(4), 492-498. doi:10.1119/1.1624114 es_ES
dc.description.references Zelichenko, V. M., & Larionov, V. V. (2007). Methodological aspects of analysis of nonlinear effects in the course on general physics. Russian Physics Journal, 50(8), 812-820. doi:10.1007/s11182-007-0122-4 es_ES
dc.description.references Grosu, I., & Ursu, D. (1986). Linear and nonlinear oscillations: an experimental for students. European Journal of Physics, 7(2), 91-94. doi:10.1088/0143-0807/7/2/003 es_ES
dc.description.references Cadmus, R. R. (1990). A video technique to facilitate the visualization of physical phenomena. American Journal of Physics, 58(4), 397-399. doi:10.1119/1.16483 es_ES
dc.description.references Cross, R. (2002). Measurements of the horizontal coefficient of restitution for a superball and a tennis ball. American Journal of Physics, 70(5), 482-489. doi:10.1119/1.1450571 es_ES
dc.description.references Riera, J., Monsoriu, J. A., Giménez, M. H., Hueso, J. L., & Torregrosa, J. R. (2003). Using image recognition to automate video analysis of physical processes. American Journal of Physics, 71(10), 1075-1079. doi:10.1119/1.1578066 es_ES
dc.description.references Page, A., Moreno, R., Candelas, P., & Belmar, F. (2008). The accuracy of webcams in 2D motion analysis: sources of error and their control. European Journal of Physics, 29(4), 857-870. doi:10.1088/0143-0807/29/4/017 es_ES
dc.description.references Page, A., Candelas, P., & Belmar, F. (2006). On the use of local fitting techniques for the analysis of physical dynamic systems. European Journal of Physics, 27(2), 273-279. doi:10.1088/0143-0807/27/2/010 es_ES
dc.description.references Qing-Xin, Y., & Pei, D. (2009). Comment on ‘Approximation for a large-angle simple pendulum period’. European Journal of Physics, 30(5), L79-L82. doi:10.1088/0143-0807/30/5/l05 es_ES
dc.description.references Johannessen, K. (2010). An approximate solution to the equation of motion for large-angle oscillations of the simple pendulum with initial velocity. European Journal of Physics, 31(3), 511-518. doi:10.1088/0143-0807/31/3/008 es_ES
dc.description.references Beléndez, A., Álvarez, M. L., Fernández, E., & Pascual, I. (2009). Linearization of conservative nonlinear oscillators. European Journal of Physics, 30(2), 259-270. doi:10.1088/0143-0807/30/2/004 es_ES
dc.description.references Cromer, A. (1995). Many oscillations of a rigid rod. American Journal of Physics, 63(2), 112-121. doi:10.1119/1.17966 es_ES
dc.description.references Beléndez, A., Hernández, A., Márquez, A., Beléndez, T., & Neipp, C. (2006). Analytical approximations for the period of a nonlinear pendulum. European Journal of Physics, 27(3), 539-551. doi:10.1088/0143-0807/27/3/008 es_ES
dc.description.references Kraftmakher, Y. (2007). Experiments with a magnetically controlled pendulum. European Journal of Physics, 28(5), 1007-1020. doi:10.1088/0143-0807/28/5/023 es_ES
dc.description.references Kewei, L., Jiahuang, L., Yang, K. Z., Liang, S. Y. W., & Juan, J. W. S. (2011). The vertical oscillations of coupled magnets. European Journal of Physics, 32(4), S1-S14. doi:10.1088/0143-0807/32/4/s01 es_ES
dc.description.references Ladera, C. L., & Donoso, G. (2012). Anharmonic oscillations of a spring–magnet system inside a magnetic coil. European Journal of Physics, 33(5), 1259-1270. doi:10.1088/0143-0807/33/5/1259 es_ES
dc.description.references Whineray, S. (1991). A cube-law air track oscillator. European Journal of Physics, 12(2), 90-95. doi:10.1088/0143-0807/12/2/008 es_ES
dc.description.references Detcheva, V., & Spassov, V. (1993). A simple nonlinear oscillator: analytical and numerical solution. Physics Education, 28(1), 39-42. doi:10.1088/0031-9120/28/1/007 es_ES
dc.description.references Filipponi, A., & Cavicchia, D. R. (2011). Anharmonic dynamics of a mass O-spring oscillator. American Journal of Physics, 79(7), 730-735. doi:10.1119/1.3579129 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem