- -

Municipal water demand forecasting: Tools for intervention time series

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Municipal water demand forecasting: Tools for intervention time series

Show full item record

Herrera Fernández, AM.; García-Díaz, JC.; Izquierdo Sebastián, J.; Pérez García, R. (2011). Municipal water demand forecasting: Tools for intervention time series. Stochastic Analysis and Applications. 29(6):998-1007. https://doi.org/10.1080/07362994.2011.610161

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59700

Files in this item

Item Metadata

Title: Municipal water demand forecasting: Tools for intervention time series
Author: Herrera Fernández, Antonio Manuel García-Díaz, J. Carlos Izquierdo Sebastián, Joaquín Pérez García, Rafael
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Issued date:
Abstract:
This article introduces some approaches to common issues arising in real cases of water demand prediction. Occurrences of negative data gathered by the network metering system and demand changes due to closure of valves ...[+]
Subjects: ARIMA models , Hybrid models , Intervention analysis , Neural networks , Water demand , 62P30 , 37M10 , 62M45
Copyrigths: Reserva de todos los derechos
Source:
Stochastic Analysis and Applications. (issn: 0736-2994 ) (eissn: 1532-9356 )
DOI: 10.1080/07362994.2011.610161
Publisher:
Taylor & Francis
Project ID:
info:eu-repo/grantAgreement/MICINN//DPI2009-11591/ES/Aplicacion De Herramientas Del Analisis Inteligente De Datos En La Gestion Tecnica De Sistemas De Distribucion Y Evacuacion De Aguas/ /
info:eu-repo/grantAgreement/GVA//ACOMP%2F2010%2F146/
Thanks:
This work has been supported by project IDAWAS, DPI2009-11591, of the Direccion General de Investigacion of the Ministerio de Ciencia e Innovacion of Spain, and ACOMP/2010/146 of the Conselleria de Educacion of the Generalitat ...[+]
This work has been supported by project IDAWAS, DPI2009-11591, of the Direccion General de Investigacion of the Ministerio de Ciencia e Innovacion of Spain, and ACOMP/2010/146 of the Conseller a de Educacion of the Generalitat ...[+]
Type: Artículo

References

Zhou, S. ., McMahon, T. ., Walton, A., & Lewis, J. (2002). Forecasting operational demand for an urban water supply zone. Journal of Hydrology, 259(1-4), 189-202. doi:10.1016/s0022-1694(01)00582-0

Bougadis, J., Adamowski, K., & Diduch, R. (2005). Short-term municipal water demand forecasting. Hydrological Processes, 19(1), 137-148. doi:10.1002/hyp.5763

Jain, A., & Ormsbee, L. E. (2002). Short-term water demand forecast modeling techniques-CONVENTIONAL METHODS VERSUS AI. Journal - American Water Works Association, 94(7), 64-72. doi:10.1002/j.1551-8833.2002.tb09507.x [+]
Zhou, S. ., McMahon, T. ., Walton, A., & Lewis, J. (2002). Forecasting operational demand for an urban water supply zone. Journal of Hydrology, 259(1-4), 189-202. doi:10.1016/s0022-1694(01)00582-0

Bougadis, J., Adamowski, K., & Diduch, R. (2005). Short-term municipal water demand forecasting. Hydrological Processes, 19(1), 137-148. doi:10.1002/hyp.5763

Jain, A., & Ormsbee, L. E. (2002). Short-term water demand forecast modeling techniques-CONVENTIONAL METHODS VERSUS AI. Journal - American Water Works Association, 94(7), 64-72. doi:10.1002/j.1551-8833.2002.tb09507.x

Peña, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2000). A Course in Time Series Analysis. Wiley Series in Probability and Statistics. doi:10.1002/9781118032978

et al. 2000 . Mining Time Series of Meteorological Variables Using Rough Sets—A Case Study, Binding Environmental Sciences and Artificial Intelligent. BESAI 2000, Germany, 7:1–8.

Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, 387(1-2), 141-150. doi:10.1016/j.jhydrol.2010.04.005

McLeod, A. I., & Vingilis, E. R. (2005). Power Computations for Intervention Analysis. Technometrics, 47(2), 174-181. doi:10.1198/004017005000000094

Box, G. E. P., & Tiao, G. C. (1975). Intervention Analysis with Applications to Economic and Environmental Problems. Journal of the American Statistical Association, 70(349), 70-79. doi:10.1080/01621459.1975.10480264

Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501-514. doi:10.1016/j.ejor.2003.08.037

Zealand, C. M., Burn, D. H., & Simonovic, S. P. (1999). Short term streamflow forecasting using artificial neural networks. Journal of Hydrology, 214(1-4), 32-48. doi:10.1016/s0022-1694(98)00242-x

Wang, W., Gelder, P. H. A. J. M. V., Vrijling, J. K., & Ma, J. (2006). Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology, 324(1-4), 383-399. doi:10.1016/j.jhydrol.2005.09.032

Kneale , P. , See , L. , and Smith , A. 2001 .Towards Defining Evaluation Measures for Neural Network Forecasting Models; Proceedings of the Sixth International Conference on GeoComputation, University of Queensland, Australia.

Peña, D., & Rodríguez, J. (2002). A Powerful Portmanteau Test of Lack of Fit for Time Series. Journal of the American Statistical Association, 97(458), 601-610. doi:10.1198/016214502760047122

Peña, D., & Rodríguez, J. (2006). The log of the determinant of the autocorrelation matrix for testing goodness of fit in time series. Journal of Statistical Planning and Inference, 136(8), 2706-2718. doi:10.1016/j.jspi.2004.10.026

LJUNG, G. M., & BOX, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297-303. doi:10.1093/biomet/65.2.297

MONTI, A. C. (1994). A proposal for a residual autocorrelation test in linear models. Biometrika, 81(4), 776-780. doi:10.1093/biomet/81.4.776

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record