Zhou, S. ., McMahon, T. ., Walton, A., & Lewis, J. (2002). Forecasting operational demand for an urban water supply zone. Journal of Hydrology, 259(1-4), 189-202. doi:10.1016/s0022-1694(01)00582-0
Bougadis, J., Adamowski, K., & Diduch, R. (2005). Short-term municipal water demand forecasting. Hydrological Processes, 19(1), 137-148. doi:10.1002/hyp.5763
Jain, A., & Ormsbee, L. E. (2002). Short-term water demand forecast modeling techniques-CONVENTIONAL METHODS VERSUS AI. Journal - American Water Works Association, 94(7), 64-72. doi:10.1002/j.1551-8833.2002.tb09507.x
[+]
Zhou, S. ., McMahon, T. ., Walton, A., & Lewis, J. (2002). Forecasting operational demand for an urban water supply zone. Journal of Hydrology, 259(1-4), 189-202. doi:10.1016/s0022-1694(01)00582-0
Bougadis, J., Adamowski, K., & Diduch, R. (2005). Short-term municipal water demand forecasting. Hydrological Processes, 19(1), 137-148. doi:10.1002/hyp.5763
Jain, A., & Ormsbee, L. E. (2002). Short-term water demand forecast modeling techniques-CONVENTIONAL METHODS VERSUS AI. Journal - American Water Works Association, 94(7), 64-72. doi:10.1002/j.1551-8833.2002.tb09507.x
Peña, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2000). A Course in Time Series Analysis. Wiley Series in Probability and Statistics. doi:10.1002/9781118032978
et al. 2000 . Mining Time Series of Meteorological Variables Using Rough Sets—A Case Study, Binding Environmental Sciences and Artificial Intelligent. BESAI 2000, Germany, 7:1–8.
Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, 387(1-2), 141-150. doi:10.1016/j.jhydrol.2010.04.005
McLeod, A. I., & Vingilis, E. R. (2005). Power Computations for Intervention Analysis. Technometrics, 47(2), 174-181. doi:10.1198/004017005000000094
Box, G. E. P., & Tiao, G. C. (1975). Intervention Analysis with Applications to Economic and Environmental Problems. Journal of the American Statistical Association, 70(349), 70-79. doi:10.1080/01621459.1975.10480264
Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501-514. doi:10.1016/j.ejor.2003.08.037
Zealand, C. M., Burn, D. H., & Simonovic, S. P. (1999). Short term streamflow forecasting using artificial neural networks. Journal of Hydrology, 214(1-4), 32-48. doi:10.1016/s0022-1694(98)00242-x
Wang, W., Gelder, P. H. A. J. M. V., Vrijling, J. K., & Ma, J. (2006). Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology, 324(1-4), 383-399. doi:10.1016/j.jhydrol.2005.09.032
Kneale , P. , See , L. , and Smith , A. 2001 .Towards Defining Evaluation Measures for Neural Network Forecasting Models; Proceedings of the Sixth International Conference on GeoComputation, University of Queensland, Australia.
Peña, D., & Rodríguez, J. (2002). A Powerful Portmanteau Test of Lack of Fit for Time Series. Journal of the American Statistical Association, 97(458), 601-610. doi:10.1198/016214502760047122
Peña, D., & Rodríguez, J. (2006). The log of the determinant of the autocorrelation matrix for testing goodness of fit in time series. Journal of Statistical Planning and Inference, 136(8), 2706-2718. doi:10.1016/j.jspi.2004.10.026
LJUNG, G. M., & BOX, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297-303. doi:10.1093/biomet/65.2.297
MONTI, A. C. (1994). A proposal for a residual autocorrelation test in linear models. Biometrika, 81(4), 776-780. doi:10.1093/biomet/81.4.776
[-]