- -

Municipal water demand forecasting: Tools for intervention time series

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Municipal water demand forecasting: Tools for intervention time series

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Herrera Fernández, Antonio Manuel es_ES
dc.contributor.author García-Díaz, J. Carlos es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.contributor.author Pérez García, Rafael es_ES
dc.date.accessioned 2016-01-12T11:17:31Z
dc.date.available 2016-01-12T11:17:31Z
dc.date.issued 2011
dc.identifier.issn 0736-2994
dc.identifier.uri http://hdl.handle.net/10251/59700
dc.description.abstract This article introduces some approaches to common issues arising in real cases of water demand prediction. Occurrences of negative data gathered by the network metering system and demand changes due to closure of valves or changes in consumer behavior are considered. Artificial neural networks (ANNs) have a principal role modeling both circumstances. First, we propose the use of ANNs as a tool to reconstruct any anomalous time series information. Next, we use what we call interrupted neural networks (I-NN) as an alternative to more classical intervention ARIMA models. Besides, the use of hybrid models that combine not only the modeling ability of ARIMA to cope with the time series linear part, but also to explain nonlinearities found in their residuals, is proposed. These models have shown promising results when tested on a real database and represent a boost to the use and the applicability of ANNs. es_ES
dc.description.sponsorship This work has been supported by project IDAWAS, DPI2009-11591, of the Direccion General de Investigacion of the Ministerio de Ciencia e Innovacion of Spain, and ACOMP/2010/146 of the Conselleria de Educacion of the Generalitat Valenciana. As well, the authors are grateful to "Aguas de Murcia" for the collaboration in this work and for the availability of the data. en_EN
dc.description.sponsorship This work has been supported by project IDAWAS, DPI2009-11591, of the Direccion General de Investigacion of the Ministerio de Ciencia e Innovacion of Spain, and ACOMP/2010/146 of the Conseller a de Educacion of the Generalitat Valenciana. As well, the authors are grateful to "Aguas de Murcia" for the collaboration in this work and for the availability of the data. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Stochastic Analysis and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ARIMA models es_ES
dc.subject Hybrid models es_ES
dc.subject Intervention analysis es_ES
dc.subject Neural networks es_ES
dc.subject Water demand es_ES
dc.subject 62P30 es_ES
dc.subject 37M10 es_ES
dc.subject 62M45 es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Municipal water demand forecasting: Tools for intervention time series es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/07362994.2011.610161
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2009-11591/ES/Aplicacion De Herramientas Del Analisis Inteligente De Datos En La Gestion Tecnica De Sistemas De Distribucion Y Evacuacion De Aguas/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2010%2F146/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Herrera Fernández, AM.; García-Díaz, JC.; Izquierdo Sebastián, J.; Pérez García, R. (2011). Municipal water demand forecasting: Tools for intervention time series. Stochastic Analysis and Applications. 29(6):998-1007. https://doi.org/10.1080/07362994.2011.610161 es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 998 es_ES
dc.description.upvformatpfin 1007 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 202140 es_ES
dc.identifier.eissn 1532-9356
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Zhou, S. ., McMahon, T. ., Walton, A., & Lewis, J. (2002). Forecasting operational demand for an urban water supply zone. Journal of Hydrology, 259(1-4), 189-202. doi:10.1016/s0022-1694(01)00582-0 es_ES
dc.description.references Bougadis, J., Adamowski, K., & Diduch, R. (2005). Short-term municipal water demand forecasting. Hydrological Processes, 19(1), 137-148. doi:10.1002/hyp.5763 es_ES
dc.description.references Jain, A., & Ormsbee, L. E. (2002). Short-term water demand forecast modeling techniques-CONVENTIONAL METHODS VERSUS AI. Journal - American Water Works Association, 94(7), 64-72. doi:10.1002/j.1551-8833.2002.tb09507.x es_ES
dc.description.references Peña, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2000). A Course in Time Series Analysis. Wiley Series in Probability and Statistics. doi:10.1002/9781118032978 es_ES
dc.description.references et al. 2000 . Mining Time Series of Meteorological Variables Using Rough Sets—A Case Study, Binding Environmental Sciences and Artificial Intelligent. BESAI 2000, Germany, 7:1–8. es_ES
dc.description.references Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, 387(1-2), 141-150. doi:10.1016/j.jhydrol.2010.04.005 es_ES
dc.description.references McLeod, A. I., & Vingilis, E. R. (2005). Power Computations for Intervention Analysis. Technometrics, 47(2), 174-181. doi:10.1198/004017005000000094 es_ES
dc.description.references Box, G. E. P., & Tiao, G. C. (1975). Intervention Analysis with Applications to Economic and Environmental Problems. Journal of the American Statistical Association, 70(349), 70-79. doi:10.1080/01621459.1975.10480264 es_ES
dc.description.references Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501-514. doi:10.1016/j.ejor.2003.08.037 es_ES
dc.description.references Zealand, C. M., Burn, D. H., & Simonovic, S. P. (1999). Short term streamflow forecasting using artificial neural networks. Journal of Hydrology, 214(1-4), 32-48. doi:10.1016/s0022-1694(98)00242-x es_ES
dc.description.references Wang, W., Gelder, P. H. A. J. M. V., Vrijling, J. K., & Ma, J. (2006). Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology, 324(1-4), 383-399. doi:10.1016/j.jhydrol.2005.09.032 es_ES
dc.description.references Kneale , P. , See , L. , and Smith , A. 2001 .Towards Defining Evaluation Measures for Neural Network Forecasting Models; Proceedings of the Sixth International Conference on GeoComputation, University of Queensland, Australia. es_ES
dc.description.references Peña, D., & Rodríguez, J. (2002). A Powerful Portmanteau Test of Lack of Fit for Time Series. Journal of the American Statistical Association, 97(458), 601-610. doi:10.1198/016214502760047122 es_ES
dc.description.references Peña, D., & Rodríguez, J. (2006). The log of the determinant of the autocorrelation matrix for testing goodness of fit in time series. Journal of Statistical Planning and Inference, 136(8), 2706-2718. doi:10.1016/j.jspi.2004.10.026 es_ES
dc.description.references LJUNG, G. M., & BOX, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297-303. doi:10.1093/biomet/65.2.297 es_ES
dc.description.references MONTI, A. C. (1994). A proposal for a residual autocorrelation test in linear models. Biometrika, 81(4), 776-780. doi:10.1093/biomet/81.4.776 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem