Mostrar el registro sencillo del ítem
dc.contributor.author | Herrera Fernández, Antonio Manuel | es_ES |
dc.contributor.author | García-Díaz, J. Carlos | es_ES |
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.contributor.author | Pérez García, Rafael | es_ES |
dc.date.accessioned | 2016-01-12T11:17:31Z | |
dc.date.available | 2016-01-12T11:17:31Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0736-2994 | |
dc.identifier.uri | http://hdl.handle.net/10251/59700 | |
dc.description.abstract | This article introduces some approaches to common issues arising in real cases of water demand prediction. Occurrences of negative data gathered by the network metering system and demand changes due to closure of valves or changes in consumer behavior are considered. Artificial neural networks (ANNs) have a principal role modeling both circumstances. First, we propose the use of ANNs as a tool to reconstruct any anomalous time series information. Next, we use what we call interrupted neural networks (I-NN) as an alternative to more classical intervention ARIMA models. Besides, the use of hybrid models that combine not only the modeling ability of ARIMA to cope with the time series linear part, but also to explain nonlinearities found in their residuals, is proposed. These models have shown promising results when tested on a real database and represent a boost to the use and the applicability of ANNs. | es_ES |
dc.description.sponsorship | This work has been supported by project IDAWAS, DPI2009-11591, of the Direccion General de Investigacion of the Ministerio de Ciencia e Innovacion of Spain, and ACOMP/2010/146 of the Conselleria de Educacion of the Generalitat Valenciana. As well, the authors are grateful to "Aguas de Murcia" for the collaboration in this work and for the availability of the data. | en_EN |
dc.description.sponsorship | This work has been supported by project IDAWAS, DPI2009-11591, of the Direccion General de Investigacion of the Ministerio de Ciencia e Innovacion of Spain, and ACOMP/2010/146 of the Conseller a de Educacion of the Generalitat Valenciana. As well, the authors are grateful to "Aguas de Murcia" for the collaboration in this work and for the availability of the data. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Stochastic Analysis and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | ARIMA models | es_ES |
dc.subject | Hybrid models | es_ES |
dc.subject | Intervention analysis | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Water demand | es_ES |
dc.subject | 62P30 | es_ES |
dc.subject | 37M10 | es_ES |
dc.subject | 62M45 | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Municipal water demand forecasting: Tools for intervention time series | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/07362994.2011.610161 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2009-11591/ES/Aplicacion De Herramientas Del Analisis Inteligente De Datos En La Gestion Tecnica De Sistemas De Distribucion Y Evacuacion De Aguas/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2010%2F146/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Herrera Fernández, AM.; García-Díaz, JC.; Izquierdo Sebastián, J.; Pérez García, R. (2011). Municipal water demand forecasting: Tools for intervention time series. Stochastic Analysis and Applications. 29(6):998-1007. https://doi.org/10.1080/07362994.2011.610161 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.description.upvformatpinicio | 998 | es_ES |
dc.description.upvformatpfin | 1007 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 202140 | es_ES |
dc.identifier.eissn | 1532-9356 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Zhou, S. ., McMahon, T. ., Walton, A., & Lewis, J. (2002). Forecasting operational demand for an urban water supply zone. Journal of Hydrology, 259(1-4), 189-202. doi:10.1016/s0022-1694(01)00582-0 | es_ES |
dc.description.references | Bougadis, J., Adamowski, K., & Diduch, R. (2005). Short-term municipal water demand forecasting. Hydrological Processes, 19(1), 137-148. doi:10.1002/hyp.5763 | es_ES |
dc.description.references | Jain, A., & Ormsbee, L. E. (2002). Short-term water demand forecast modeling techniques-CONVENTIONAL METHODS VERSUS AI. Journal - American Water Works Association, 94(7), 64-72. doi:10.1002/j.1551-8833.2002.tb09507.x | es_ES |
dc.description.references | Peña, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2000). A Course in Time Series Analysis. Wiley Series in Probability and Statistics. doi:10.1002/9781118032978 | es_ES |
dc.description.references | et al. 2000 . Mining Time Series of Meteorological Variables Using Rough Sets—A Case Study, Binding Environmental Sciences and Artificial Intelligent. BESAI 2000, Germany, 7:1–8. | es_ES |
dc.description.references | Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, 387(1-2), 141-150. doi:10.1016/j.jhydrol.2010.04.005 | es_ES |
dc.description.references | McLeod, A. I., & Vingilis, E. R. (2005). Power Computations for Intervention Analysis. Technometrics, 47(2), 174-181. doi:10.1198/004017005000000094 | es_ES |
dc.description.references | Box, G. E. P., & Tiao, G. C. (1975). Intervention Analysis with Applications to Economic and Environmental Problems. Journal of the American Statistical Association, 70(349), 70-79. doi:10.1080/01621459.1975.10480264 | es_ES |
dc.description.references | Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501-514. doi:10.1016/j.ejor.2003.08.037 | es_ES |
dc.description.references | Zealand, C. M., Burn, D. H., & Simonovic, S. P. (1999). Short term streamflow forecasting using artificial neural networks. Journal of Hydrology, 214(1-4), 32-48. doi:10.1016/s0022-1694(98)00242-x | es_ES |
dc.description.references | Wang, W., Gelder, P. H. A. J. M. V., Vrijling, J. K., & Ma, J. (2006). Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology, 324(1-4), 383-399. doi:10.1016/j.jhydrol.2005.09.032 | es_ES |
dc.description.references | Kneale , P. , See , L. , and Smith , A. 2001 .Towards Defining Evaluation Measures for Neural Network Forecasting Models; Proceedings of the Sixth International Conference on GeoComputation, University of Queensland, Australia. | es_ES |
dc.description.references | Peña, D., & Rodríguez, J. (2002). A Powerful Portmanteau Test of Lack of Fit for Time Series. Journal of the American Statistical Association, 97(458), 601-610. doi:10.1198/016214502760047122 | es_ES |
dc.description.references | Peña, D., & Rodríguez, J. (2006). The log of the determinant of the autocorrelation matrix for testing goodness of fit in time series. Journal of Statistical Planning and Inference, 136(8), 2706-2718. doi:10.1016/j.jspi.2004.10.026 | es_ES |
dc.description.references | LJUNG, G. M., & BOX, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297-303. doi:10.1093/biomet/65.2.297 | es_ES |
dc.description.references | MONTI, A. C. (1994). A proposal for a residual autocorrelation test in linear models. Biometrika, 81(4), 776-780. doi:10.1093/biomet/81.4.776 | es_ES |