- -

Changes in caecal microbiota and mucosal gene expression revealed new aspects of Epizootic rabbit Enteropathy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Changes in caecal microbiota and mucosal gene expression revealed new aspects of Epizootic rabbit Enteropathy

Mostrar el registro completo del ítem

Bauerl, C.; Collado Amores, MC.; Zúñiga Cabrera, M.; Blas Ferrer, E.; Perez Martinez, G. (2014). Changes in caecal microbiota and mucosal gene expression revealed new aspects of Epizootic rabbit Enteropathy. PLoS ONE. 9(8):1-12. https://doi.org/10.1371/journal.pone.0105707

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59799

Ficheros en el ítem

Metadatos del ítem

Título: Changes in caecal microbiota and mucosal gene expression revealed new aspects of Epizootic rabbit Enteropathy
Autor: Bauerl, Christine Collado Amores, María Carmen Zúñiga Cabrera, Manuel Blas Ferrer, Enrique Perez Martinez, Gaspar
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal
Fecha difusión:
Resumen:
Epizootic Rabbit Enteropathy (ERE) is a severe disease of unknown aetiology that mainly affects post-weaning animals. Its incidence can be prevented by antibiotic treatment suggesting that bacterial elements are crucial ...[+]
Palabras clave: Epizootic Rabbit Enteropathy (ERE) , Cecal microbiota
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0105707
Editorial:
Public Library of Science
Versión del editor: http://dx.doi.org/105707. doi:10.1371/journal.pone.0105707
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//AGL2010-22211/ES/MECANISMO DE ACCION PROBIOTICA EN CEPAS DEL GRUPO LACTOBACILLUS CASEI-PARACASEI%2FRHAMNOSUS: IDENTIFICACION DE MOLECULAS CLAVE MEDIANTE MODELOS IN VITRO./
info:eu-repo/grantAgreement/MEC//AGL2006-07596/ES/DESARROLLO DE ESTRATEGIAS GLOBALES DE ALIMENTACION Y MANEJO PARA MEJORAR LA SALUD Y EL BIENESTAR EN LAS GRANJAS CUNICOLAS/
info:eu-repo/grantAgreement/MEC//CSD2007-00063/ES/Nuevos Ingredientes de Alimentos Funcionales para Mejorar la Salud/
Agradecimientos:
This work was supported by the grants AGL2010-22211, AGL2006-07596 and by the Fun-C-Food CSD2007-00063 project from the Consolider-Ingenio programme, both from the Spanish Ministry of Science and Innovation. The funders ...[+]
Tipo: Artículo

References

Harcourt-Brown F (2002) Digestive disorders. In: Harcourt-Brown F, editor. Textbook of Rabbit Medicine. Oxford, UK: Reed Educational and Professional Publishing, Ltd. pp. 249–291.

Sekirov, I., & Finlay, B. B. (2009). The role of the intestinal microbiota in enteric infection. The Journal of Physiology, 587(17), 4159-4167. doi:10.1113/jphysiol.2009.172742

Monteils, V., Cauquil, L., Combes, S., Godon, J.-J., & Gidenne, T. (2008). Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiology Ecology, 66(3), 620-629. doi:10.1111/j.1574-6941.2008.00611.x [+]
Harcourt-Brown F (2002) Digestive disorders. In: Harcourt-Brown F, editor. Textbook of Rabbit Medicine. Oxford, UK: Reed Educational and Professional Publishing, Ltd. pp. 249–291.

Sekirov, I., & Finlay, B. B. (2009). The role of the intestinal microbiota in enteric infection. The Journal of Physiology, 587(17), 4159-4167. doi:10.1113/jphysiol.2009.172742

Monteils, V., Cauquil, L., Combes, S., Godon, J.-J., & Gidenne, T. (2008). Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiology Ecology, 66(3), 620-629. doi:10.1111/j.1574-6941.2008.00611.x

Combes, S., Michelland, R. J., Monteils, V., Cauquil, L., Soulié, V., Tran, N. U., … Fortun-Lamothe, L. (2011). Postnatal development of the rabbit caecal microbiota composition and activity. FEMS Microbiology Ecology, 77(3), 680-689. doi:10.1111/j.1574-6941.2011.01148.x

Licois, D., Wyers, M., & Coudert, P. (2005). Epizootic Rabbit Enteropathy: experimental transmission and clinical characterization. Veterinary Research, 36(4), 601-613. doi:10.1051/vetres:2005021

Sinkovics, G. (1976). Intestinal flora studies in rabbit mucoid enteritis. Veterinary Record, 98(8), 151-152. doi:10.1136/vr.98.8.151

Dharmani, P., Srivastava, V., Kissoon-Singh, V., & Chadee, K. (2008). Role of Intestinal Mucins in Innate Host Defense Mechanisms against Pathogens. Journal of Innate Immunity, 1(2), 123-135. doi:10.1159/000163037

Collado, M. C., Delgado, S., Maldonado, A., & Rodríguez, J. M. (2009). Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Letters in Applied Microbiology, 48(5), 523-528. doi:10.1111/j.1472-765x.2009.02567.x

Ufnar, J. A., Wang, S. Y., Christiansen, J. M., Yampara-Iquise, H., Carson, C. A., & Ellender, R. D. (2006). Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. Journal of Applied Microbiology, 101(1), 44-52. doi:10.1111/j.1365-2672.2006.02989.x

Parks, D. H., & Beiko, R. G. (2010). Identifying biologically relevant differences between metagenomic communities. Bioinformatics, 26(6), 715-721. doi:10.1093/bioinformatics/btq041

Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Human gut microbes associated with obesity. Nature, 444(7122), 1022-1023. doi:10.1038/4441022a

Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., … Sghir, A. (2009). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal, 3(6), 700-714. doi:10.1038/ismej.2009.2

Noah, T. K., Kazanjian, A., Whitsett, J., & Shroyer, N. F. (2010). SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells. Experimental Cell Research, 316(3), 452-465. doi:10.1016/j.yexcr.2009.09.020

Michelland R, Combes S, Cauquil L, Gidenne T, Monteils V, et al. Characterization of bacterial communities in caeum, hard and soft feces of rabbit using 16S rRNA genes capillary electrophoresis single-strand conformation polymorphism (CE-SSCP). In: Xiccato G, Trocino A, Lukefahr SD, editors; 2008 june 10–13, 2008; Verona, Italy. Fondazione Iniziative Zooprofilattiche e Zootecniche Brescia- Italy. pp. 1025–1029.

Rodríguez-Romero, N., Abecia, L., & Fondevila, M. (2012). Bacterial profile from caecal contents and soft faeces in growing rabbits given diets differing in soluble and insoluble fibre levels. Anaerobe, 18(6), 602-607. doi:10.1016/j.anaerobe.2012.10.006

Abecia, L., Fondevila, M., Balcells, J., Edwards, J. E., Newbold, C. J., & McEwan, N. R. (2005). Molecular profiling of bacterial species in the rabbit caecum. FEMS Microbiology Letters, 244(1), 111-115. doi:10.1016/j.femsle.2005.01.028

Huybens, N., Houeix, J., Licois, D., Mainil, J., & Marlier, D. (2013). Pyrosequencing of epizootic rabbit enteropathy inocula and rabbit caecal samples. The Veterinary Journal, 196(1), 109-110. doi:10.1016/j.tvjl.2012.08.014

Bangsgaard Bendtsen, K. M., Krych, L., Sørensen, D. B., Pang, W., Nielsen, D. S., Josefsen, K., … Hansen, A. K. (2012). Gut Microbiota Composition Is Correlated to Grid Floor Induced Stress and Behavior in the BALB/c Mouse. PLoS ONE, 7(10), e46231. doi:10.1371/journal.pone.0046231

An, C., Kuda, T., Yazaki, T., Takahashi, H., & Kimura, B. (2012). FLX Pyrosequencing Analysis of the Effects of the Brown-Algal Fermentable Polysaccharides Alginate and Laminaran on Rat Cecal Microbiotas. Applied and Environmental Microbiology, 79(3), 860-866. doi:10.1128/aem.02354-12

Islam, K. B. M. S., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., … Yokota, A. (2011). Bile Acid Is a Host Factor That Regulates the Composition of the Cecal Microbiota in Rats. Gastroenterology, 141(5), 1773-1781. doi:10.1053/j.gastro.2011.07.046

Abecia, L., Fondevila, M., Balcells, J., Lobley, G. E., & McEwan, N. R. (2007). The effect of medicated diets and level of feeding on caecal microbiota of lactating rabbit does. Journal of Applied Microbiology, 103(4), 787-793. doi:10.1111/j.1365-2672.2007.03309.x

Hill, D. A., Hoffmann, C., Abt, M. C., Du, Y., Kobuley, D., Kirn, T. J., … Artis, D. (2009). Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunology, 3(2), 148-158. doi:10.1038/mi.2009.132

Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., … Gordon, J. I. (2008). Evolution of Mammals and Their Gut Microbes. Science, 320(5883), 1647-1651. doi:10.1126/science.1155725

Morrow, A. L., Lagomarcino, A. J., Schibler, K. R., Taft, D. H., Yu, Z., Wang, B., … Newburg, D. S. (2013). Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. Microbiome, 1(1). doi:10.1186/2049-2618-1-13

Martinez-Medina, M., Aldeguer, X., Gonzalez-Huix, F., Acero, D., & Garcia-Gil, J. L. (2006). Abnormal microbiota composition in the ileocolonic mucosa of Crohnʼs disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflammatory Bowel Diseases, 12(12), 1136-1145. doi:10.1097/01.mib.0000235828.09305.0c

Lapthorne, S., Pereira-Fantini, P. M., Fouhy, F., Wilson, G., Thomas, S. L., Dellios, N. L., … Bines, J. E. (2013). Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome. Gut Microbes, 4(3), 212-221. doi:10.4161/gmic.24372

Craven, M., Egan, C. E., Dowd, S. E., McDonough, S. P., Dogan, B., Denkers, E. Y., … Simpson, K. W. (2012). Inflammation Drives Dysbiosis and Bacterial Invasion in Murine Models of Ileal Crohn’s Disease. PLoS ONE, 7(7), e41594. doi:10.1371/journal.pone.0041594

Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S., & de Vos, W. M. (2007). The Mucin Degrader Akkermansia muciniphila Is an Abundant Resident of the Human Intestinal Tract. Applied and Environmental Microbiology, 74(5), 1646-1648. doi:10.1128/aem.01226-07

Derrien, M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 54(5), 1469-1476. doi:10.1099/ijs.0.02873-0

Ganesh, B. P., Klopfleisch, R., Loh, G., & Blaut, M. (2013). Commensal Akkermansia muciniphila Exacerbates Gut Inflammation in Salmonella Typhimurium-Infected Gnotobiotic Mice. PLoS ONE, 8(9), e74963. doi:10.1371/journal.pone.0074963

Rychlik, J. L., & May, T. (2000). The Effect of a Methanogen, Methanobrevibacter smithii , on the Growth Rate, Organic Acid Production, and Specific ATP Activity of Three Predominant Ruminal Cellulolytic Bacteria. Current Microbiology, 40(3), 176-180. doi:10.1007/s002849910035

J. Abell, G. C., Christophersen, C. T., McOrist, A. L., & Clarke, J. M. (2011). Dietary resistant and butyrylated starches have different effects on the faecal bacterial flora of azoxymethane-treated rats. British Journal of Nutrition, 105(10), 1480-1485. doi:10.1017/s0007114510005349

Scott, K. P., Duncan, S. H., Louis, P., & Flint, H. J. (2011). Nutritional influences on the gut microbiota and the consequences for gastrointestinal health. Biochemical Society Transactions, 39(4), 1073-1078. doi:10.1042/bst0391073

Franz, R., Soliva, C. R., Kreuzer, M., Hummel, J., & Clauss, M. (2011). Methane output of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) fed a hay-only diet: Implications for the scaling of methane production with body mass in non-ruminant mammalian herbivores. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 158(1), 177-181. doi:10.1016/j.cbpa.2010.10.019

Lau, S. K. ., Woo, P. C. ., Woo, G. K. ., Fung, A. M. ., Wong, M. K. ., Chan, K., … Yuen, K. (2004). Eggerthella hongkongensis sp. nov. and eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteremia. Diagnostic Microbiology and Infectious Disease, 49(4), 255-263. doi:10.1016/j.diagmicrobio.2004.04.012

Carson, C. A., Christiansen, J. M., Yampara-Iquise, H., Benson, V. W., Baffaut, C., Davis, J. V., … Fales, W. H. (2005). Specificity of a Bacteroides thetaiotaomicron Marker for Human Feces. Applied and Environmental Microbiology, 71(8), 4945-4949. doi:10.1128/aem.71.8.4945-4949.2005

Wang, J., Fan, Y., & Yao, Z. (2010). Isolation of a Lysinibacillus fusiformis strain with tetrodotoxin-producing ability from puffer fish Fugu obscurus and the characterization of this strain. Toxicon, 56(4), 640-643. doi:10.1016/j.toxicon.2010.05.011

Hanifin, C. T. (2010). The Chemical and Evolutionary Ecology of Tetrodotoxin (TTX) Toxicity in Terrestrial Vertebrates. Marine Drugs, 8(3), 577-593. doi:10.3390/md8030577

From, C., Pukall, R., Schumann, P., Hormazabal, V., & Granum, P. E. (2005). Toxin-Producing Ability among Bacillus spp. Outside the Bacillus cereus Group. Applied and Environmental Microbiology, 71(3), 1178-1183. doi:10.1128/aem.71.3.1178-1183.2005

Sahl, J. W., & Rasko, D. A. (2012). Analysis of Global Transcriptional Profiles of Enterotoxigenic Escherichia coli Isolate E24377A. Infection and Immunity, 80(3), 1232-1242. doi:10.1128/iai.06138-11

Marlier, D., Dewrée, R., Lassence, C., Licois, D., Mainil, J., Coudert, P., … Vindevogel, H. (2006). Infectious agents associated with epizootic rabbit enteropathy: Isolation and attempts to reproduce the syndrome. The Veterinary Journal, 172(3), 493-500. doi:10.1016/j.tvjl.2005.07.011

Uehara, A., Fujimoto, Y., Kawasaki, A., Kusumoto, S., Fukase, K., & Takada, H. (2006). Meso-Diaminopimelic Acid and Meso-Lanthionine, Amino Acids Specific to Bacterial Peptidoglycans, Activate Human Epithelial Cells through NOD1. The Journal of Immunology, 177(3), 1796-1804. doi:10.4049/jimmunol.177.3.1796

Hasegawa, M., Yamazaki, T., Kamada, N., Tawaratsumida, K., Kim, Y.-G., Núñez, G., & Inohara, N. (2011). Nucleotide-Binding Oligomerization Domain 1 Mediates Recognition of Clostridium difficile and Induces Neutrophil Recruitment and Protection against the Pathogen. The Journal of Immunology, 186(8), 4872-4880. doi:10.4049/jimmunol.1003761

Wright, S., Ramos, R., Tobias, P., Ulevitch, R., & Mathison, J. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249(4975), 1431-1433. doi:10.1126/science.1698311

Dziarski, R. (2003). Recognition of bacterial peptidoglycan by the innate immune system. Cellular and Molecular Life Sciences (CMLS), 60(9), 1793-1804. doi:10.1007/s00018-003-3019-6

Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nature Reviews Immunology, 1(2), 135-145. doi:10.1038/35100529

Manichanh, C., Borruel, N., Casellas, F., & Guarner, F. (2012). The gut microbiota in IBD. Nature Reviews Gastroenterology & Hepatology, 9(10), 599-608. doi:10.1038/nrgastro.2012.152

Berry, D., & Reinisch, W. (2013). Intestinal microbiota: A source of novel biomarkers in inflammatory bowel diseases? Best Practice & Research Clinical Gastroenterology, 27(1), 47-58. doi:10.1016/j.bpg.2013.03.005

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem