- -

Changes in caecal microbiota and mucosal gene expression revealed new aspects of Epizootic rabbit Enteropathy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Changes in caecal microbiota and mucosal gene expression revealed new aspects of Epizootic rabbit Enteropathy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bauerl, Christine es_ES
dc.contributor.author Collado Amores, María Carmen es_ES
dc.contributor.author Zúñiga Cabrera, Manuel es_ES
dc.contributor.author Blas Ferrer, Enrique es_ES
dc.contributor.author Perez Martinez, Gaspar es_ES
dc.date.accessioned 2016-01-13T11:26:26Z
dc.date.available 2016-01-13T11:26:26Z
dc.date.issued 2014-08
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/59799
dc.description.abstract Epizootic Rabbit Enteropathy (ERE) is a severe disease of unknown aetiology that mainly affects post-weaning animals. Its incidence can be prevented by antibiotic treatment suggesting that bacterial elements are crucial for the development of the disease. Microbial dynamics and host responses during the disease were studied. Cecal microbiota was characterized in three rabbit groups (ERE-affected, healthy and healthy pretreated with antibiotics), followed by transcriptional analysis of cytokines and mucins in the cecal mucosa and vermix by q-rtPCR. In healthy animals, cecal microbiota with or without antibiotic pretreatment was very similar and dominated by Alistipes and Ruminococcus. Proportions of both genera decreased in ERE rabbits whereas Bacteroides, Akkermansia and Rikenella increased, as well as Clostridium, c-Proteobacteria and other opportunistic and pathogenic species. The ERE group displayed remarkable dysbiosis and reduced taxonomic diversity. Transcription rate of mucins and inflammatory cytokines was very high in ERE rabbits, except IL-2, and its analysis revealed the existence of two clearly different gene expression patterns corresponding to Inflammatory and (mucin) Secretory Profiles. Furthermore, these profiles were associated to different bacterial species, suggesting that they may correspond to different stages of the disease. Other data obtained in this work reinforced the notion that ERE morbidity and mortality is possibly caused by an overgrowth of different pathogens in the gut of animals whose immune defence mechanisms seem not to be adequately responding. es_ES
dc.description.sponsorship This work was supported by the grants AGL2010-22211, AGL2006-07596 and by the Fun-C-Food CSD2007-00063 project from the Consolider-Ingenio programme, both from the Spanish Ministry of Science and Innovation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Epizootic Rabbit Enteropathy (ERE) es_ES
dc.subject Cecal microbiota es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.subject.classification NUTRICION Y BROMATOLOGIA es_ES
dc.title Changes in caecal microbiota and mucosal gene expression revealed new aspects of Epizootic rabbit Enteropathy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0105707
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2010-22211/ES/MECANISMO DE ACCION PROBIOTICA EN CEPAS DEL GRUPO LACTOBACILLUS CASEI-PARACASEI%2FRHAMNOSUS: IDENTIFICACION DE MOLECULAS CLAVE MEDIANTE MODELOS IN VITRO./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AGL2006-07596/ES/DESARROLLO DE ESTRATEGIAS GLOBALES DE ALIMENTACION Y MANEJO PARA MEJORAR LA SALUD Y EL BIENESTAR EN LAS GRANJAS CUNICOLAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00063/ES/Nuevos Ingredientes de Alimentos Funcionales para Mejorar la Salud/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal es_ES
dc.description.bibliographicCitation Bauerl, C.; Collado Amores, MC.; Zúñiga Cabrera, M.; Blas Ferrer, E.; Perez Martinez, G. (2014). Changes in caecal microbiota and mucosal gene expression revealed new aspects of Epizootic rabbit Enteropathy. PLoS ONE. 9(8):1-12. https://doi.org/10.1371/journal.pone.0105707 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/105707. doi:10.1371/journal.pone.0105707 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 287925 es_ES
dc.identifier.pmid 25147938 en_EN
dc.identifier.pmcid PMC4141808 en_EN
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Harcourt-Brown F (2002) Digestive disorders. In: Harcourt-Brown F, editor. Textbook of Rabbit Medicine. Oxford, UK: Reed Educational and Professional Publishing, Ltd. pp. 249–291. es_ES
dc.description.references Sekirov, I., & Finlay, B. B. (2009). The role of the intestinal microbiota in enteric infection. The Journal of Physiology, 587(17), 4159-4167. doi:10.1113/jphysiol.2009.172742 es_ES
dc.description.references Monteils, V., Cauquil, L., Combes, S., Godon, J.-J., & Gidenne, T. (2008). Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiology Ecology, 66(3), 620-629. doi:10.1111/j.1574-6941.2008.00611.x es_ES
dc.description.references Combes, S., Michelland, R. J., Monteils, V., Cauquil, L., Soulié, V., Tran, N. U., … Fortun-Lamothe, L. (2011). Postnatal development of the rabbit caecal microbiota composition and activity. FEMS Microbiology Ecology, 77(3), 680-689. doi:10.1111/j.1574-6941.2011.01148.x es_ES
dc.description.references Licois, D., Wyers, M., & Coudert, P. (2005). Epizootic Rabbit Enteropathy: experimental transmission and clinical characterization. Veterinary Research, 36(4), 601-613. doi:10.1051/vetres:2005021 es_ES
dc.description.references Sinkovics, G. (1976). Intestinal flora studies in rabbit mucoid enteritis. Veterinary Record, 98(8), 151-152. doi:10.1136/vr.98.8.151 es_ES
dc.description.references Dharmani, P., Srivastava, V., Kissoon-Singh, V., & Chadee, K. (2008). Role of Intestinal Mucins in Innate Host Defense Mechanisms against Pathogens. Journal of Innate Immunity, 1(2), 123-135. doi:10.1159/000163037 es_ES
dc.description.references Collado, M. C., Delgado, S., Maldonado, A., & Rodríguez, J. M. (2009). Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Letters in Applied Microbiology, 48(5), 523-528. doi:10.1111/j.1472-765x.2009.02567.x es_ES
dc.description.references Ufnar, J. A., Wang, S. Y., Christiansen, J. M., Yampara-Iquise, H., Carson, C. A., & Ellender, R. D. (2006). Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. Journal of Applied Microbiology, 101(1), 44-52. doi:10.1111/j.1365-2672.2006.02989.x es_ES
dc.description.references Parks, D. H., & Beiko, R. G. (2010). Identifying biologically relevant differences between metagenomic communities. Bioinformatics, 26(6), 715-721. doi:10.1093/bioinformatics/btq041 es_ES
dc.description.references Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Human gut microbes associated with obesity. Nature, 444(7122), 1022-1023. doi:10.1038/4441022a es_ES
dc.description.references Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., … Sghir, A. (2009). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal, 3(6), 700-714. doi:10.1038/ismej.2009.2 es_ES
dc.description.references Noah, T. K., Kazanjian, A., Whitsett, J., & Shroyer, N. F. (2010). SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells. Experimental Cell Research, 316(3), 452-465. doi:10.1016/j.yexcr.2009.09.020 es_ES
dc.description.references Michelland R, Combes S, Cauquil L, Gidenne T, Monteils V, et al. Characterization of bacterial communities in caeum, hard and soft feces of rabbit using 16S rRNA genes capillary electrophoresis single-strand conformation polymorphism (CE-SSCP). In: Xiccato G, Trocino A, Lukefahr SD, editors; 2008 june 10–13, 2008; Verona, Italy. Fondazione Iniziative Zooprofilattiche e Zootecniche Brescia- Italy. pp. 1025–1029. es_ES
dc.description.references Rodríguez-Romero, N., Abecia, L., & Fondevila, M. (2012). Bacterial profile from caecal contents and soft faeces in growing rabbits given diets differing in soluble and insoluble fibre levels. Anaerobe, 18(6), 602-607. doi:10.1016/j.anaerobe.2012.10.006 es_ES
dc.description.references Abecia, L., Fondevila, M., Balcells, J., Edwards, J. E., Newbold, C. J., & McEwan, N. R. (2005). Molecular profiling of bacterial species in the rabbit caecum. FEMS Microbiology Letters, 244(1), 111-115. doi:10.1016/j.femsle.2005.01.028 es_ES
dc.description.references Huybens, N., Houeix, J., Licois, D., Mainil, J., & Marlier, D. (2013). Pyrosequencing of epizootic rabbit enteropathy inocula and rabbit caecal samples. The Veterinary Journal, 196(1), 109-110. doi:10.1016/j.tvjl.2012.08.014 es_ES
dc.description.references Bangsgaard Bendtsen, K. M., Krych, L., Sørensen, D. B., Pang, W., Nielsen, D. S., Josefsen, K., … Hansen, A. K. (2012). Gut Microbiota Composition Is Correlated to Grid Floor Induced Stress and Behavior in the BALB/c Mouse. PLoS ONE, 7(10), e46231. doi:10.1371/journal.pone.0046231 es_ES
dc.description.references An, C., Kuda, T., Yazaki, T., Takahashi, H., & Kimura, B. (2012). FLX Pyrosequencing Analysis of the Effects of the Brown-Algal Fermentable Polysaccharides Alginate and Laminaran on Rat Cecal Microbiotas. Applied and Environmental Microbiology, 79(3), 860-866. doi:10.1128/aem.02354-12 es_ES
dc.description.references Islam, K. B. M. S., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., … Yokota, A. (2011). Bile Acid Is a Host Factor That Regulates the Composition of the Cecal Microbiota in Rats. Gastroenterology, 141(5), 1773-1781. doi:10.1053/j.gastro.2011.07.046 es_ES
dc.description.references Abecia, L., Fondevila, M., Balcells, J., Lobley, G. E., & McEwan, N. R. (2007). The effect of medicated diets and level of feeding on caecal microbiota of lactating rabbit does. Journal of Applied Microbiology, 103(4), 787-793. doi:10.1111/j.1365-2672.2007.03309.x es_ES
dc.description.references Hill, D. A., Hoffmann, C., Abt, M. C., Du, Y., Kobuley, D., Kirn, T. J., … Artis, D. (2009). Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunology, 3(2), 148-158. doi:10.1038/mi.2009.132 es_ES
dc.description.references Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., … Gordon, J. I. (2008). Evolution of Mammals and Their Gut Microbes. Science, 320(5883), 1647-1651. doi:10.1126/science.1155725 es_ES
dc.description.references Morrow, A. L., Lagomarcino, A. J., Schibler, K. R., Taft, D. H., Yu, Z., Wang, B., … Newburg, D. S. (2013). Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. Microbiome, 1(1). doi:10.1186/2049-2618-1-13 es_ES
dc.description.references Martinez-Medina, M., Aldeguer, X., Gonzalez-Huix, F., Acero, D., & Garcia-Gil, J. L. (2006). Abnormal microbiota composition in the ileocolonic mucosa of Crohnʼs disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflammatory Bowel Diseases, 12(12), 1136-1145. doi:10.1097/01.mib.0000235828.09305.0c es_ES
dc.description.references Lapthorne, S., Pereira-Fantini, P. M., Fouhy, F., Wilson, G., Thomas, S. L., Dellios, N. L., … Bines, J. E. (2013). Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome. Gut Microbes, 4(3), 212-221. doi:10.4161/gmic.24372 es_ES
dc.description.references Craven, M., Egan, C. E., Dowd, S. E., McDonough, S. P., Dogan, B., Denkers, E. Y., … Simpson, K. W. (2012). Inflammation Drives Dysbiosis and Bacterial Invasion in Murine Models of Ileal Crohn’s Disease. PLoS ONE, 7(7), e41594. doi:10.1371/journal.pone.0041594 es_ES
dc.description.references Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S., & de Vos, W. M. (2007). The Mucin Degrader Akkermansia muciniphila Is an Abundant Resident of the Human Intestinal Tract. Applied and Environmental Microbiology, 74(5), 1646-1648. doi:10.1128/aem.01226-07 es_ES
dc.description.references Derrien, M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 54(5), 1469-1476. doi:10.1099/ijs.0.02873-0 es_ES
dc.description.references Ganesh, B. P., Klopfleisch, R., Loh, G., & Blaut, M. (2013). Commensal Akkermansia muciniphila Exacerbates Gut Inflammation in Salmonella Typhimurium-Infected Gnotobiotic Mice. PLoS ONE, 8(9), e74963. doi:10.1371/journal.pone.0074963 es_ES
dc.description.references Rychlik, J. L., & May, T. (2000). The Effect of a Methanogen, Methanobrevibacter smithii , on the Growth Rate, Organic Acid Production, and Specific ATP Activity of Three Predominant Ruminal Cellulolytic Bacteria. Current Microbiology, 40(3), 176-180. doi:10.1007/s002849910035 es_ES
dc.description.references J. Abell, G. C., Christophersen, C. T., McOrist, A. L., & Clarke, J. M. (2011). Dietary resistant and butyrylated starches have different effects on the faecal bacterial flora of azoxymethane-treated rats. British Journal of Nutrition, 105(10), 1480-1485. doi:10.1017/s0007114510005349 es_ES
dc.description.references Scott, K. P., Duncan, S. H., Louis, P., & Flint, H. J. (2011). Nutritional influences on the gut microbiota and the consequences for gastrointestinal health. Biochemical Society Transactions, 39(4), 1073-1078. doi:10.1042/bst0391073 es_ES
dc.description.references Franz, R., Soliva, C. R., Kreuzer, M., Hummel, J., & Clauss, M. (2011). Methane output of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) fed a hay-only diet: Implications for the scaling of methane production with body mass in non-ruminant mammalian herbivores. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 158(1), 177-181. doi:10.1016/j.cbpa.2010.10.019 es_ES
dc.description.references Lau, S. K. ., Woo, P. C. ., Woo, G. K. ., Fung, A. M. ., Wong, M. K. ., Chan, K., … Yuen, K. (2004). Eggerthella hongkongensis sp. nov. and eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteremia. Diagnostic Microbiology and Infectious Disease, 49(4), 255-263. doi:10.1016/j.diagmicrobio.2004.04.012 es_ES
dc.description.references Carson, C. A., Christiansen, J. M., Yampara-Iquise, H., Benson, V. W., Baffaut, C., Davis, J. V., … Fales, W. H. (2005). Specificity of a Bacteroides thetaiotaomicron Marker for Human Feces. Applied and Environmental Microbiology, 71(8), 4945-4949. doi:10.1128/aem.71.8.4945-4949.2005 es_ES
dc.description.references Wang, J., Fan, Y., & Yao, Z. (2010). Isolation of a Lysinibacillus fusiformis strain with tetrodotoxin-producing ability from puffer fish Fugu obscurus and the characterization of this strain. Toxicon, 56(4), 640-643. doi:10.1016/j.toxicon.2010.05.011 es_ES
dc.description.references Hanifin, C. T. (2010). The Chemical and Evolutionary Ecology of Tetrodotoxin (TTX) Toxicity in Terrestrial Vertebrates. Marine Drugs, 8(3), 577-593. doi:10.3390/md8030577 es_ES
dc.description.references From, C., Pukall, R., Schumann, P., Hormazabal, V., & Granum, P. E. (2005). Toxin-Producing Ability among Bacillus spp. Outside the Bacillus cereus Group. Applied and Environmental Microbiology, 71(3), 1178-1183. doi:10.1128/aem.71.3.1178-1183.2005 es_ES
dc.description.references Sahl, J. W., & Rasko, D. A. (2012). Analysis of Global Transcriptional Profiles of Enterotoxigenic Escherichia coli Isolate E24377A. Infection and Immunity, 80(3), 1232-1242. doi:10.1128/iai.06138-11 es_ES
dc.description.references Marlier, D., Dewrée, R., Lassence, C., Licois, D., Mainil, J., Coudert, P., … Vindevogel, H. (2006). Infectious agents associated with epizootic rabbit enteropathy: Isolation and attempts to reproduce the syndrome. The Veterinary Journal, 172(3), 493-500. doi:10.1016/j.tvjl.2005.07.011 es_ES
dc.description.references Uehara, A., Fujimoto, Y., Kawasaki, A., Kusumoto, S., Fukase, K., & Takada, H. (2006). Meso-Diaminopimelic Acid and Meso-Lanthionine, Amino Acids Specific to Bacterial Peptidoglycans, Activate Human Epithelial Cells through NOD1. The Journal of Immunology, 177(3), 1796-1804. doi:10.4049/jimmunol.177.3.1796 es_ES
dc.description.references Hasegawa, M., Yamazaki, T., Kamada, N., Tawaratsumida, K., Kim, Y.-G., Núñez, G., & Inohara, N. (2011). Nucleotide-Binding Oligomerization Domain 1 Mediates Recognition of Clostridium difficile and Induces Neutrophil Recruitment and Protection against the Pathogen. The Journal of Immunology, 186(8), 4872-4880. doi:10.4049/jimmunol.1003761 es_ES
dc.description.references Wright, S., Ramos, R., Tobias, P., Ulevitch, R., & Mathison, J. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249(4975), 1431-1433. doi:10.1126/science.1698311 es_ES
dc.description.references Dziarski, R. (2003). Recognition of bacterial peptidoglycan by the innate immune system. Cellular and Molecular Life Sciences (CMLS), 60(9), 1793-1804. doi:10.1007/s00018-003-3019-6 es_ES
dc.description.references Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nature Reviews Immunology, 1(2), 135-145. doi:10.1038/35100529 es_ES
dc.description.references Manichanh, C., Borruel, N., Casellas, F., & Guarner, F. (2012). The gut microbiota in IBD. Nature Reviews Gastroenterology & Hepatology, 9(10), 599-608. doi:10.1038/nrgastro.2012.152 es_ES
dc.description.references Berry, D., & Reinisch, W. (2013). Intestinal microbiota: A source of novel biomarkers in inflammatory bowel diseases? Best Practice & Research Clinical Gastroenterology, 27(1), 47-58. doi:10.1016/j.bpg.2013.03.005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem