Mostrar el registro sencillo del ítem
dc.contributor.author | Bauerl, Christine | es_ES |
dc.contributor.author | Collado Amores, María Carmen | es_ES |
dc.contributor.author | Zúñiga Cabrera, Manuel | es_ES |
dc.contributor.author | Blas Ferrer, Enrique | es_ES |
dc.contributor.author | Perez Martinez, Gaspar | es_ES |
dc.date.accessioned | 2016-01-13T11:26:26Z | |
dc.date.available | 2016-01-13T11:26:26Z | |
dc.date.issued | 2014-08 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10251/59799 | |
dc.description.abstract | Epizootic Rabbit Enteropathy (ERE) is a severe disease of unknown aetiology that mainly affects post-weaning animals. Its incidence can be prevented by antibiotic treatment suggesting that bacterial elements are crucial for the development of the disease. Microbial dynamics and host responses during the disease were studied. Cecal microbiota was characterized in three rabbit groups (ERE-affected, healthy and healthy pretreated with antibiotics), followed by transcriptional analysis of cytokines and mucins in the cecal mucosa and vermix by q-rtPCR. In healthy animals, cecal microbiota with or without antibiotic pretreatment was very similar and dominated by Alistipes and Ruminococcus. Proportions of both genera decreased in ERE rabbits whereas Bacteroides, Akkermansia and Rikenella increased, as well as Clostridium, c-Proteobacteria and other opportunistic and pathogenic species. The ERE group displayed remarkable dysbiosis and reduced taxonomic diversity. Transcription rate of mucins and inflammatory cytokines was very high in ERE rabbits, except IL-2, and its analysis revealed the existence of two clearly different gene expression patterns corresponding to Inflammatory and (mucin) Secretory Profiles. Furthermore, these profiles were associated to different bacterial species, suggesting that they may correspond to different stages of the disease. Other data obtained in this work reinforced the notion that ERE morbidity and mortality is possibly caused by an overgrowth of different pathogens in the gut of animals whose immune defence mechanisms seem not to be adequately responding. | es_ES |
dc.description.sponsorship | This work was supported by the grants AGL2010-22211, AGL2006-07596 and by the Fun-C-Food CSD2007-00063 project from the Consolider-Ingenio programme, both from the Spanish Ministry of Science and Innovation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Epizootic Rabbit Enteropathy (ERE) | es_ES |
dc.subject | Cecal microbiota | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.subject.classification | NUTRICION Y BROMATOLOGIA | es_ES |
dc.title | Changes in caecal microbiota and mucosal gene expression revealed new aspects of Epizootic rabbit Enteropathy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0105707 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2010-22211/ES/MECANISMO DE ACCION PROBIOTICA EN CEPAS DEL GRUPO LACTOBACILLUS CASEI-PARACASEI%2FRHAMNOSUS: IDENTIFICACION DE MOLECULAS CLAVE MEDIANTE MODELOS IN VITRO./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//AGL2006-07596/ES/DESARROLLO DE ESTRATEGIAS GLOBALES DE ALIMENTACION Y MANEJO PARA MEJORAR LA SALUD Y EL BIENESTAR EN LAS GRANJAS CUNICOLAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00063/ES/Nuevos Ingredientes de Alimentos Funcionales para Mejorar la Salud/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal | es_ES |
dc.description.bibliographicCitation | Bauerl, C.; Collado Amores, MC.; Zúñiga Cabrera, M.; Blas Ferrer, E.; Perez Martinez, G. (2014). Changes in caecal microbiota and mucosal gene expression revealed new aspects of Epizootic rabbit Enteropathy. PLoS ONE. 9(8):1-12. https://doi.org/10.1371/journal.pone.0105707 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/105707. doi:10.1371/journal.pone.0105707 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 287925 | es_ES |
dc.identifier.pmid | 25147938 | en_EN |
dc.identifier.pmcid | PMC4141808 | en_EN |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Harcourt-Brown F (2002) Digestive disorders. In: Harcourt-Brown F, editor. Textbook of Rabbit Medicine. Oxford, UK: Reed Educational and Professional Publishing, Ltd. pp. 249–291. | es_ES |
dc.description.references | Sekirov, I., & Finlay, B. B. (2009). The role of the intestinal microbiota in enteric infection. The Journal of Physiology, 587(17), 4159-4167. doi:10.1113/jphysiol.2009.172742 | es_ES |
dc.description.references | Monteils, V., Cauquil, L., Combes, S., Godon, J.-J., & Gidenne, T. (2008). Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiology Ecology, 66(3), 620-629. doi:10.1111/j.1574-6941.2008.00611.x | es_ES |
dc.description.references | Combes, S., Michelland, R. J., Monteils, V., Cauquil, L., Soulié, V., Tran, N. U., … Fortun-Lamothe, L. (2011). Postnatal development of the rabbit caecal microbiota composition and activity. FEMS Microbiology Ecology, 77(3), 680-689. doi:10.1111/j.1574-6941.2011.01148.x | es_ES |
dc.description.references | Licois, D., Wyers, M., & Coudert, P. (2005). Epizootic Rabbit Enteropathy: experimental transmission and clinical characterization. Veterinary Research, 36(4), 601-613. doi:10.1051/vetres:2005021 | es_ES |
dc.description.references | Sinkovics, G. (1976). Intestinal flora studies in rabbit mucoid enteritis. Veterinary Record, 98(8), 151-152. doi:10.1136/vr.98.8.151 | es_ES |
dc.description.references | Dharmani, P., Srivastava, V., Kissoon-Singh, V., & Chadee, K. (2008). Role of Intestinal Mucins in Innate Host Defense Mechanisms against Pathogens. Journal of Innate Immunity, 1(2), 123-135. doi:10.1159/000163037 | es_ES |
dc.description.references | Collado, M. C., Delgado, S., Maldonado, A., & Rodríguez, J. M. (2009). Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Letters in Applied Microbiology, 48(5), 523-528. doi:10.1111/j.1472-765x.2009.02567.x | es_ES |
dc.description.references | Ufnar, J. A., Wang, S. Y., Christiansen, J. M., Yampara-Iquise, H., Carson, C. A., & Ellender, R. D. (2006). Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. Journal of Applied Microbiology, 101(1), 44-52. doi:10.1111/j.1365-2672.2006.02989.x | es_ES |
dc.description.references | Parks, D. H., & Beiko, R. G. (2010). Identifying biologically relevant differences between metagenomic communities. Bioinformatics, 26(6), 715-721. doi:10.1093/bioinformatics/btq041 | es_ES |
dc.description.references | Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Human gut microbes associated with obesity. Nature, 444(7122), 1022-1023. doi:10.1038/4441022a | es_ES |
dc.description.references | Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., … Sghir, A. (2009). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal, 3(6), 700-714. doi:10.1038/ismej.2009.2 | es_ES |
dc.description.references | Noah, T. K., Kazanjian, A., Whitsett, J., & Shroyer, N. F. (2010). SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells. Experimental Cell Research, 316(3), 452-465. doi:10.1016/j.yexcr.2009.09.020 | es_ES |
dc.description.references | Michelland R, Combes S, Cauquil L, Gidenne T, Monteils V, et al. Characterization of bacterial communities in caeum, hard and soft feces of rabbit using 16S rRNA genes capillary electrophoresis single-strand conformation polymorphism (CE-SSCP). In: Xiccato G, Trocino A, Lukefahr SD, editors; 2008 june 10–13, 2008; Verona, Italy. Fondazione Iniziative Zooprofilattiche e Zootecniche Brescia- Italy. pp. 1025–1029. | es_ES |
dc.description.references | Rodríguez-Romero, N., Abecia, L., & Fondevila, M. (2012). Bacterial profile from caecal contents and soft faeces in growing rabbits given diets differing in soluble and insoluble fibre levels. Anaerobe, 18(6), 602-607. doi:10.1016/j.anaerobe.2012.10.006 | es_ES |
dc.description.references | Abecia, L., Fondevila, M., Balcells, J., Edwards, J. E., Newbold, C. J., & McEwan, N. R. (2005). Molecular profiling of bacterial species in the rabbit caecum. FEMS Microbiology Letters, 244(1), 111-115. doi:10.1016/j.femsle.2005.01.028 | es_ES |
dc.description.references | Huybens, N., Houeix, J., Licois, D., Mainil, J., & Marlier, D. (2013). Pyrosequencing of epizootic rabbit enteropathy inocula and rabbit caecal samples. The Veterinary Journal, 196(1), 109-110. doi:10.1016/j.tvjl.2012.08.014 | es_ES |
dc.description.references | Bangsgaard Bendtsen, K. M., Krych, L., Sørensen, D. B., Pang, W., Nielsen, D. S., Josefsen, K., … Hansen, A. K. (2012). Gut Microbiota Composition Is Correlated to Grid Floor Induced Stress and Behavior in the BALB/c Mouse. PLoS ONE, 7(10), e46231. doi:10.1371/journal.pone.0046231 | es_ES |
dc.description.references | An, C., Kuda, T., Yazaki, T., Takahashi, H., & Kimura, B. (2012). FLX Pyrosequencing Analysis of the Effects of the Brown-Algal Fermentable Polysaccharides Alginate and Laminaran on Rat Cecal Microbiotas. Applied and Environmental Microbiology, 79(3), 860-866. doi:10.1128/aem.02354-12 | es_ES |
dc.description.references | Islam, K. B. M. S., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., … Yokota, A. (2011). Bile Acid Is a Host Factor That Regulates the Composition of the Cecal Microbiota in Rats. Gastroenterology, 141(5), 1773-1781. doi:10.1053/j.gastro.2011.07.046 | es_ES |
dc.description.references | Abecia, L., Fondevila, M., Balcells, J., Lobley, G. E., & McEwan, N. R. (2007). The effect of medicated diets and level of feeding on caecal microbiota of lactating rabbit does. Journal of Applied Microbiology, 103(4), 787-793. doi:10.1111/j.1365-2672.2007.03309.x | es_ES |
dc.description.references | Hill, D. A., Hoffmann, C., Abt, M. C., Du, Y., Kobuley, D., Kirn, T. J., … Artis, D. (2009). Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunology, 3(2), 148-158. doi:10.1038/mi.2009.132 | es_ES |
dc.description.references | Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., … Gordon, J. I. (2008). Evolution of Mammals and Their Gut Microbes. Science, 320(5883), 1647-1651. doi:10.1126/science.1155725 | es_ES |
dc.description.references | Morrow, A. L., Lagomarcino, A. J., Schibler, K. R., Taft, D. H., Yu, Z., Wang, B., … Newburg, D. S. (2013). Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. Microbiome, 1(1). doi:10.1186/2049-2618-1-13 | es_ES |
dc.description.references | Martinez-Medina, M., Aldeguer, X., Gonzalez-Huix, F., Acero, D., & Garcia-Gil, J. L. (2006). Abnormal microbiota composition in the ileocolonic mucosa of Crohnʼs disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflammatory Bowel Diseases, 12(12), 1136-1145. doi:10.1097/01.mib.0000235828.09305.0c | es_ES |
dc.description.references | Lapthorne, S., Pereira-Fantini, P. M., Fouhy, F., Wilson, G., Thomas, S. L., Dellios, N. L., … Bines, J. E. (2013). Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome. Gut Microbes, 4(3), 212-221. doi:10.4161/gmic.24372 | es_ES |
dc.description.references | Craven, M., Egan, C. E., Dowd, S. E., McDonough, S. P., Dogan, B., Denkers, E. Y., … Simpson, K. W. (2012). Inflammation Drives Dysbiosis and Bacterial Invasion in Murine Models of Ileal Crohn’s Disease. PLoS ONE, 7(7), e41594. doi:10.1371/journal.pone.0041594 | es_ES |
dc.description.references | Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S., & de Vos, W. M. (2007). The Mucin Degrader Akkermansia muciniphila Is an Abundant Resident of the Human Intestinal Tract. Applied and Environmental Microbiology, 74(5), 1646-1648. doi:10.1128/aem.01226-07 | es_ES |
dc.description.references | Derrien, M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 54(5), 1469-1476. doi:10.1099/ijs.0.02873-0 | es_ES |
dc.description.references | Ganesh, B. P., Klopfleisch, R., Loh, G., & Blaut, M. (2013). Commensal Akkermansia muciniphila Exacerbates Gut Inflammation in Salmonella Typhimurium-Infected Gnotobiotic Mice. PLoS ONE, 8(9), e74963. doi:10.1371/journal.pone.0074963 | es_ES |
dc.description.references | Rychlik, J. L., & May, T. (2000). The Effect of a Methanogen, Methanobrevibacter smithii , on the Growth Rate, Organic Acid Production, and Specific ATP Activity of Three Predominant Ruminal Cellulolytic Bacteria. Current Microbiology, 40(3), 176-180. doi:10.1007/s002849910035 | es_ES |
dc.description.references | J. Abell, G. C., Christophersen, C. T., McOrist, A. L., & Clarke, J. M. (2011). Dietary resistant and butyrylated starches have different effects on the faecal bacterial flora of azoxymethane-treated rats. British Journal of Nutrition, 105(10), 1480-1485. doi:10.1017/s0007114510005349 | es_ES |
dc.description.references | Scott, K. P., Duncan, S. H., Louis, P., & Flint, H. J. (2011). Nutritional influences on the gut microbiota and the consequences for gastrointestinal health. Biochemical Society Transactions, 39(4), 1073-1078. doi:10.1042/bst0391073 | es_ES |
dc.description.references | Franz, R., Soliva, C. R., Kreuzer, M., Hummel, J., & Clauss, M. (2011). Methane output of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) fed a hay-only diet: Implications for the scaling of methane production with body mass in non-ruminant mammalian herbivores. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 158(1), 177-181. doi:10.1016/j.cbpa.2010.10.019 | es_ES |
dc.description.references | Lau, S. K. ., Woo, P. C. ., Woo, G. K. ., Fung, A. M. ., Wong, M. K. ., Chan, K., … Yuen, K. (2004). Eggerthella hongkongensis sp. nov. and eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteremia. Diagnostic Microbiology and Infectious Disease, 49(4), 255-263. doi:10.1016/j.diagmicrobio.2004.04.012 | es_ES |
dc.description.references | Carson, C. A., Christiansen, J. M., Yampara-Iquise, H., Benson, V. W., Baffaut, C., Davis, J. V., … Fales, W. H. (2005). Specificity of a Bacteroides thetaiotaomicron Marker for Human Feces. Applied and Environmental Microbiology, 71(8), 4945-4949. doi:10.1128/aem.71.8.4945-4949.2005 | es_ES |
dc.description.references | Wang, J., Fan, Y., & Yao, Z. (2010). Isolation of a Lysinibacillus fusiformis strain with tetrodotoxin-producing ability from puffer fish Fugu obscurus and the characterization of this strain. Toxicon, 56(4), 640-643. doi:10.1016/j.toxicon.2010.05.011 | es_ES |
dc.description.references | Hanifin, C. T. (2010). The Chemical and Evolutionary Ecology of Tetrodotoxin (TTX) Toxicity in Terrestrial Vertebrates. Marine Drugs, 8(3), 577-593. doi:10.3390/md8030577 | es_ES |
dc.description.references | From, C., Pukall, R., Schumann, P., Hormazabal, V., & Granum, P. E. (2005). Toxin-Producing Ability among Bacillus spp. Outside the Bacillus cereus Group. Applied and Environmental Microbiology, 71(3), 1178-1183. doi:10.1128/aem.71.3.1178-1183.2005 | es_ES |
dc.description.references | Sahl, J. W., & Rasko, D. A. (2012). Analysis of Global Transcriptional Profiles of Enterotoxigenic Escherichia coli Isolate E24377A. Infection and Immunity, 80(3), 1232-1242. doi:10.1128/iai.06138-11 | es_ES |
dc.description.references | Marlier, D., Dewrée, R., Lassence, C., Licois, D., Mainil, J., Coudert, P., … Vindevogel, H. (2006). Infectious agents associated with epizootic rabbit enteropathy: Isolation and attempts to reproduce the syndrome. The Veterinary Journal, 172(3), 493-500. doi:10.1016/j.tvjl.2005.07.011 | es_ES |
dc.description.references | Uehara, A., Fujimoto, Y., Kawasaki, A., Kusumoto, S., Fukase, K., & Takada, H. (2006). Meso-Diaminopimelic Acid and Meso-Lanthionine, Amino Acids Specific to Bacterial Peptidoglycans, Activate Human Epithelial Cells through NOD1. The Journal of Immunology, 177(3), 1796-1804. doi:10.4049/jimmunol.177.3.1796 | es_ES |
dc.description.references | Hasegawa, M., Yamazaki, T., Kamada, N., Tawaratsumida, K., Kim, Y.-G., Núñez, G., & Inohara, N. (2011). Nucleotide-Binding Oligomerization Domain 1 Mediates Recognition of Clostridium difficile and Induces Neutrophil Recruitment and Protection against the Pathogen. The Journal of Immunology, 186(8), 4872-4880. doi:10.4049/jimmunol.1003761 | es_ES |
dc.description.references | Wright, S., Ramos, R., Tobias, P., Ulevitch, R., & Mathison, J. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249(4975), 1431-1433. doi:10.1126/science.1698311 | es_ES |
dc.description.references | Dziarski, R. (2003). Recognition of bacterial peptidoglycan by the innate immune system. Cellular and Molecular Life Sciences (CMLS), 60(9), 1793-1804. doi:10.1007/s00018-003-3019-6 | es_ES |
dc.description.references | Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nature Reviews Immunology, 1(2), 135-145. doi:10.1038/35100529 | es_ES |
dc.description.references | Manichanh, C., Borruel, N., Casellas, F., & Guarner, F. (2012). The gut microbiota in IBD. Nature Reviews Gastroenterology & Hepatology, 9(10), 599-608. doi:10.1038/nrgastro.2012.152 | es_ES |
dc.description.references | Berry, D., & Reinisch, W. (2013). Intestinal microbiota: A source of novel biomarkers in inflammatory bowel diseases? Best Practice & Research Clinical Gastroenterology, 27(1), 47-58. doi:10.1016/j.bpg.2013.03.005 | es_ES |