- -

Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ugarte, Juan P. es_ES
dc.contributor.author Orozco-Duque, Andrés es_ES
dc.contributor.author Tobon Zuloaga, Catalina es_ES
dc.contributor.author Kremen, Vaclav es_ES
dc.contributor.author Novak, Daniel es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.contributor.author Oesterlein, Tobias es_ES
dc.contributor.author Schmitt, Clauss es_ES
dc.contributor.author Luik, Armin es_ES
dc.contributor.author Bustamante, John es_ES
dc.date.accessioned 2016-01-13T11:51:15Z
dc.date.available 2016-01-13T11:51:15Z
dc.date.issued 2014-12
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/59810
dc.description.abstract There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multicenter databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping. es_ES
dc.description.sponsorship JPU, CT, and JB were partially supported by Departamento Administrativo de Ciencia, Tecnologia e Innovacion de la Republica de Colombia (www.colciencias.gov.co), project # 121056933647; AO was supported by the Programa de Formacion de Investigadores Francisco Jose de Caldas (www.colciencias.gov.co); VK and DN were partially supported by research project # MSM6840770012 Interdisciplinary Biomedical Engineering Research II from the Ministry of Education (www.msmt.cz), Youth and Sports of the Czech Republic, and VK was partially supported by post-doctoral research project GACR # P103/11/P106 of the Czech Science Foundation (www.gacr.cz). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Rotor tip areas es_ES
dc.subject Complex fractionated atrial electrograms es_ES
dc.subject Atrial fibrillation es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0114577
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//121056933647/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GACR//P103%1F11%2FP106/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MSMT//MSM6840770012/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Ugarte, JP.; Orozco-Duque, A.; Tobon Zuloaga, C.; Kremen, V.; Novak, D.; Saiz Rodríguez, FJ.; Oesterlein, T.... (2014). Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model. PLoS ONE. December:1-19. https://doi.org/10.1371/journal.pone.0114577 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pone.0114577 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume December es_ES
dc.relation.senia 287663 es_ES
dc.identifier.pmid 25489858 en_EN
dc.identifier.pmcid PMC4260907 en_EN
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
dc.contributor.funder Czech Science Foundation es_ES
dc.contributor.funder Ministry of Education, Youth and Sport of the Czech Republic es_ES
dc.description.references De Bakker, J. M. T., & Wittkampf, F. H. M. (2010). The Pathophysiologic Basis of Fractionated and Complex Electrograms and the Impact of Recording Techniques on Their Detection and Interpretation. Circulation: Arrhythmia and Electrophysiology, 3(2), 204-213. doi:10.1161/circep.109.904763 es_ES
dc.description.references Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054 es_ES
dc.description.references Reddy, V. Y. (2009). Atrial Fibrillation: Unanswered Questions and Future Directions. Cardiology Clinics, 27(1), 201-216. doi:10.1016/j.ccl.2008.10.002 es_ES
dc.description.references Jadidi, A. S., Duncan, E., Miyazaki, S., Lellouche, N., Shah, A. J., Forclaz, A., … Jaïs, P. (2012). Functional Nature of Electrogram Fractionation Demonstrated by Left Atrial High-Density Mapping. Circulation: Arrhythmia and Electrophysiology, 5(1), 32-42. doi:10.1161/circep.111.964197 es_ES
dc.description.references Ciaccio, E. J., Biviano, A. B., Whang, W., & Garan, H. (2012). Identification of recurring patterns in fractionated atrial electrograms using new transform coefficients. BioMedical Engineering OnLine, 11(1), 4. doi:10.1186/1475-925x-11-4 es_ES
dc.description.references Ganesan, A. N., Kuklik, P., Lau, D. H., Brooks, A. G., Baumert, M., Lim, W. W., … Sanders, P. (2013). Bipolar Electrogram Shannon Entropy at Sites of Rotational Activation. Circulation: Arrhythmia and Electrophysiology, 6(1), 48-57. doi:10.1161/circep.112.976654 es_ES
dc.description.references Navoret, N., Jacquir, S., Laurent, G., & Binczak, S. (2013). Detection of Complex Fractionated Atrial Electrograms Using Recurrence Quantification Analysis. IEEE Transactions on Biomedical Engineering, 60(7), 1975-1982. doi:10.1109/tbme.2013.2247402 es_ES
dc.description.references Skanes, A. C., Mandapati, R., Berenfeld, O., Davidenko, J. M., & Jalife, J. (1998). Spatiotemporal Periodicity During Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 98(12), 1236-1248. doi:10.1161/01.cir.98.12.1236 es_ES
dc.description.references Umapathy, K., Masse, S., Kolodziejska, K., Veenhuyzen, G. D., Chauhan, V. S., Husain, M., … Nanthakumar, K. (2008). Electrogram fractionation in murine HL-1 atrial monolayer model. Heart Rhythm, 5(7), 1029-1035. doi:10.1016/j.hrthm.2008.03.022 es_ES
dc.description.references Zlochiver, S., Yamazaki, M., Kalifa, J., & Berenfeld, O. (2008). Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm, 5(6), 846-854. doi:10.1016/j.hrthm.2008.03.010 es_ES
dc.description.references Narayan, S. M., Patel, J., Mulpuru, S., & Krummen, D. E. (2012). Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with elimination on follow-up: A video case study. Heart Rhythm, 9(9), 1436-1439. doi:10.1016/j.hrthm.2012.03.055 es_ES
dc.description.references Narayan, S. M., Shivkumar, K., Krummen, D. E., Miller, J. M., & Rappel, W.-J. (2013). Panoramic Electrophysiological Mapping but not Electrogram Morphology Identifies Stable Sources for Human Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 6(1), 58-67. doi:10.1161/circep.111.977264 es_ES
dc.description.references Tobón, C., Ruiz-Villa, C. A., Heidenreich, E., Romero, L., Hornero, F., & Saiz, J. (2013). A Three-Dimensional Human Atrial Model with Fiber Orientation. Electrograms and Arrhythmic Activation Patterns Relationship. PLoS ONE, 8(2), e50883. doi:10.1371/journal.pone.0050883 es_ES
dc.description.references Kneller, J., Zou, R., Vigmond, E. J., Wang, Z., Leon, L. J., & Nattel, S. (2002). Cholinergic Atrial Fibrillation in a Computer Model of a Two-Dimensional Sheet of Canine Atrial Cells With Realistic Ionic Properties. Circulation Research, 90(9). doi:10.1161/01.res.0000019783.88094.ba es_ES
dc.description.references Bosch, R. (1999). Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovascular Research, 44(1), 121-131. doi:10.1016/s0008-6363(99)00178-9 es_ES
dc.description.references Workman, A. (2001). The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Research, 52(2), 226-235. doi:10.1016/s0008-6363(01)00380-7 es_ES
dc.description.references WAGONER, D. R. V. (2003). Electrophysiological Remodeling in Human Atrial Fibrillation. Pacing and Clinical Electrophysiology, 26(7p2), 1572-1575. doi:10.1046/j.1460-9592.2003.t01-1-00234.x es_ES
dc.description.references ZHANG, H., GARRATT, C., ZHU, J., & HOLDEN, A. (2005). Role of up-regulation of in action potential shortening associated with atrial fibrillation in humans. Cardiovascular Research, 66(3), 493-502. doi:10.1016/j.cardiores.2005.01.020 es_ES
dc.description.references Roberge, F. A., Vinet, A., & Victorri, B. (1986). Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle. Circulation Research, 58(4), 461-475. doi:10.1161/01.res.58.4.461 es_ES
dc.description.references Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2 es_ES
dc.description.references NARAYAN, S. M., KRUMMEN, D. E., & RAPPEL, W.-J. (2012). Clinical Mapping Approach To Diagnose Electrical Rotors and Focal Impulse Sources for Human Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 23(5), 447-454. doi:10.1111/j.1540-8167.2012.02332.x es_ES
dc.description.references Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297 es_ES
dc.description.references Pincus, S. M., & Goldberger, A. L. (1994). Physiological time-series analysis: what does regularity quantify? American Journal of Physiology-Heart and Circulatory Physiology, 266(4), H1643-H1656. doi:10.1152/ajpheart.1994.266.4.h1643 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2010). A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal Processing and Control, 5(1), 1-14. doi:10.1016/j.bspc.2009.11.001 es_ES
dc.description.references Křemen, V., Lhotská, L., Macaš, M., Čihák, R., Vančura, V., Kautzner, J., & Wichterle, D. (2008). A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation. Physiological Measurement, 29(12), 1371-1381. doi:10.1088/0967-3334/29/12/002 es_ES
dc.description.references Kremen V, Kordik P, Lhotska L (2009) Comparison of several classifiers to evaluate endocardial electrograms fractionation in human. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. pp. 2502–2505. es_ES
dc.description.references Kremen V (2008) Automated assessment of endocardial electrograms fractionation in human. Ph.D. thesis, Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics. es_ES
dc.description.references Schilling C (2012) Analysis of Atrial Electrograms, volume 17. Karlrsruhe: KIT Scientific Publishing. es_ES
dc.description.references Pincus, S. M. (1992). Approximating Markov chains. Proceedings of the National Academy of Sciences, 89(10), 4432-4436. doi:10.1073/pnas.89.10.4432 es_ES
dc.description.references Konings, K. T. S., Smeets, J. L. R. M., Penn, O. C., Wellens, H. J. J., & Allessie, M. A. (1997). Configuration of Unipolar Atrial Electrograms During Electrically Induced Atrial Fibrillation in Humans. Circulation, 95(5), 1231-1241. doi:10.1161/01.cir.95.5.1231 es_ES
dc.description.references JACQUEMET, V., VIRAG, N., IHARA, Z., DANG, L., BLANC, O., ZOZOR, S., … HENRIQUEZ, C. (2003). Study of Unipolar Electrogram Morphology in a Computer Model of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 14(s10), S172-S179. doi:10.1046/j.1540.8167.90308.x es_ES
dc.description.references Nademanee, K., Lockwood, E., Oketani, N., & Gidney, B. (2010). Catheter ablation of atrial fibrillation guided by complex fractionated atrial electrogram mapping of atrial fibrillation substrate. Journal of Cardiology, 55(1), 1-12. doi:10.1016/j.jjcc.2009.11.002 es_ES
dc.description.references Pincus, S., & Singer, B. H. (1996). Randomness and degrees of irregularity. Proceedings of the National Academy of Sciences, 93(5), 2083-2088. doi:10.1073/pnas.93.5.2083 es_ES
dc.description.references Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D., & Stergiou, N. (2012). The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Annals of Biomedical Engineering, 41(2), 349-365. doi:10.1007/s10439-012-0668-3 es_ES
dc.description.references Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039 es_ES
dc.description.references HOEKSTRA, B. P. T., DIKS, C. G. H., ALLESSIE, M. A., & GOEDB, J. (1995). Nonlinear Analysis of Epicardial Atrial Electrograms of Electrically Induced Atrial Fibrillation in Man. Journal of Cardiovascular Electrophysiology, 6(6), 419-440. doi:10.1111/j.1540-8167.1995.tb00416.x es_ES
dc.description.references Anier, A., Lipping, T., Ferenets, R., Puumala, P., Sonkajärvi, E., Rätsep, I., & Jäntti, V. (2012). Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy. British Journal of Anaesthesia, 109(6), 928-934. doi:10.1093/bja/aes312 es_ES
dc.description.references Scherr, D., Dalal, D., Cheema, A., Cheng, A., Henrikson, C. A., Spragg, D., … Dong, J. (2007). Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm, 4(8), 1013-1020. doi:10.1016/j.hrthm.2007.04.021 es_ES
dc.description.references Hunter, R. J., Diab, I., Tayebjee, M., Richmond, L., Sporton, S., Earley, M. J., & Schilling, R. J. (2011). Characterization of Fractionated Atrial Electrograms Critical for Maintenance of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 4(5), 622-629. doi:10.1161/circep.111.962928 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem