Mostrar el registro sencillo del ítem
dc.contributor.author | Ugarte, Juan P. | es_ES |
dc.contributor.author | Orozco-Duque, Andrés | es_ES |
dc.contributor.author | Tobon Zuloaga, Catalina | es_ES |
dc.contributor.author | Kremen, Vaclav | es_ES |
dc.contributor.author | Novak, Daniel | es_ES |
dc.contributor.author | Saiz Rodríguez, Francisco Javier | es_ES |
dc.contributor.author | Oesterlein, Tobias | es_ES |
dc.contributor.author | Schmitt, Clauss | es_ES |
dc.contributor.author | Luik, Armin | es_ES |
dc.contributor.author | Bustamante, John | es_ES |
dc.date.accessioned | 2016-01-13T11:51:15Z | |
dc.date.available | 2016-01-13T11:51:15Z | |
dc.date.issued | 2014-12 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10251/59810 | |
dc.description.abstract | There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multicenter databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping. | es_ES |
dc.description.sponsorship | JPU, CT, and JB were partially supported by Departamento Administrativo de Ciencia, Tecnologia e Innovacion de la Republica de Colombia (www.colciencias.gov.co), project # 121056933647; AO was supported by the Programa de Formacion de Investigadores Francisco Jose de Caldas (www.colciencias.gov.co); VK and DN were partially supported by research project # MSM6840770012 Interdisciplinary Biomedical Engineering Research II from the Ministry of Education (www.msmt.cz), Youth and Sports of the Czech Republic, and VK was partially supported by post-doctoral research project GACR # P103/11/P106 of the Czech Science Foundation (www.gacr.cz). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Rotor tip areas | es_ES |
dc.subject | Complex fractionated atrial electrograms | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0114577 | |
dc.relation.projectID | info:eu-repo/grantAgreement/COLCIENCIAS//121056933647/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GACR//P103%1F11%2FP106/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MSMT//MSM6840770012/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.description.bibliographicCitation | Ugarte, JP.; Orozco-Duque, A.; Tobon Zuloaga, C.; Kremen, V.; Novak, D.; Saiz Rodríguez, FJ.; Oesterlein, T.... (2014). Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model. PLoS ONE. December:1-19. https://doi.org/10.1371/journal.pone.0114577 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1371/journal.pone.0114577 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | December | es_ES |
dc.relation.senia | 287663 | es_ES |
dc.identifier.pmid | 25489858 | en_EN |
dc.identifier.pmcid | PMC4260907 | en_EN |
dc.contributor.funder | Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia | es_ES |
dc.contributor.funder | Czech Science Foundation | es_ES |
dc.contributor.funder | Ministry of Education, Youth and Sport of the Czech Republic | es_ES |
dc.description.references | De Bakker, J. M. T., & Wittkampf, F. H. M. (2010). The Pathophysiologic Basis of Fractionated and Complex Electrograms and the Impact of Recording Techniques on Their Detection and Interpretation. Circulation: Arrhythmia and Electrophysiology, 3(2), 204-213. doi:10.1161/circep.109.904763 | es_ES |
dc.description.references | Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054 | es_ES |
dc.description.references | Reddy, V. Y. (2009). Atrial Fibrillation: Unanswered Questions and Future Directions. Cardiology Clinics, 27(1), 201-216. doi:10.1016/j.ccl.2008.10.002 | es_ES |
dc.description.references | Jadidi, A. S., Duncan, E., Miyazaki, S., Lellouche, N., Shah, A. J., Forclaz, A., … Jaïs, P. (2012). Functional Nature of Electrogram Fractionation Demonstrated by Left Atrial High-Density Mapping. Circulation: Arrhythmia and Electrophysiology, 5(1), 32-42. doi:10.1161/circep.111.964197 | es_ES |
dc.description.references | Ciaccio, E. J., Biviano, A. B., Whang, W., & Garan, H. (2012). Identification of recurring patterns in fractionated atrial electrograms using new transform coefficients. BioMedical Engineering OnLine, 11(1), 4. doi:10.1186/1475-925x-11-4 | es_ES |
dc.description.references | Ganesan, A. N., Kuklik, P., Lau, D. H., Brooks, A. G., Baumert, M., Lim, W. W., … Sanders, P. (2013). Bipolar Electrogram Shannon Entropy at Sites of Rotational Activation. Circulation: Arrhythmia and Electrophysiology, 6(1), 48-57. doi:10.1161/circep.112.976654 | es_ES |
dc.description.references | Navoret, N., Jacquir, S., Laurent, G., & Binczak, S. (2013). Detection of Complex Fractionated Atrial Electrograms Using Recurrence Quantification Analysis. IEEE Transactions on Biomedical Engineering, 60(7), 1975-1982. doi:10.1109/tbme.2013.2247402 | es_ES |
dc.description.references | Skanes, A. C., Mandapati, R., Berenfeld, O., Davidenko, J. M., & Jalife, J. (1998). Spatiotemporal Periodicity During Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 98(12), 1236-1248. doi:10.1161/01.cir.98.12.1236 | es_ES |
dc.description.references | Umapathy, K., Masse, S., Kolodziejska, K., Veenhuyzen, G. D., Chauhan, V. S., Husain, M., … Nanthakumar, K. (2008). Electrogram fractionation in murine HL-1 atrial monolayer model. Heart Rhythm, 5(7), 1029-1035. doi:10.1016/j.hrthm.2008.03.022 | es_ES |
dc.description.references | Zlochiver, S., Yamazaki, M., Kalifa, J., & Berenfeld, O. (2008). Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm, 5(6), 846-854. doi:10.1016/j.hrthm.2008.03.010 | es_ES |
dc.description.references | Narayan, S. M., Patel, J., Mulpuru, S., & Krummen, D. E. (2012). Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with elimination on follow-up: A video case study. Heart Rhythm, 9(9), 1436-1439. doi:10.1016/j.hrthm.2012.03.055 | es_ES |
dc.description.references | Narayan, S. M., Shivkumar, K., Krummen, D. E., Miller, J. M., & Rappel, W.-J. (2013). Panoramic Electrophysiological Mapping but not Electrogram Morphology Identifies Stable Sources for Human Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 6(1), 58-67. doi:10.1161/circep.111.977264 | es_ES |
dc.description.references | Tobón, C., Ruiz-Villa, C. A., Heidenreich, E., Romero, L., Hornero, F., & Saiz, J. (2013). A Three-Dimensional Human Atrial Model with Fiber Orientation. Electrograms and Arrhythmic Activation Patterns Relationship. PLoS ONE, 8(2), e50883. doi:10.1371/journal.pone.0050883 | es_ES |
dc.description.references | Kneller, J., Zou, R., Vigmond, E. J., Wang, Z., Leon, L. J., & Nattel, S. (2002). Cholinergic Atrial Fibrillation in a Computer Model of a Two-Dimensional Sheet of Canine Atrial Cells With Realistic Ionic Properties. Circulation Research, 90(9). doi:10.1161/01.res.0000019783.88094.ba | es_ES |
dc.description.references | Bosch, R. (1999). Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovascular Research, 44(1), 121-131. doi:10.1016/s0008-6363(99)00178-9 | es_ES |
dc.description.references | Workman, A. (2001). The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Research, 52(2), 226-235. doi:10.1016/s0008-6363(01)00380-7 | es_ES |
dc.description.references | WAGONER, D. R. V. (2003). Electrophysiological Remodeling in Human Atrial Fibrillation. Pacing and Clinical Electrophysiology, 26(7p2), 1572-1575. doi:10.1046/j.1460-9592.2003.t01-1-00234.x | es_ES |
dc.description.references | ZHANG, H., GARRATT, C., ZHU, J., & HOLDEN, A. (2005). Role of up-regulation of in action potential shortening associated with atrial fibrillation in humans. Cardiovascular Research, 66(3), 493-502. doi:10.1016/j.cardiores.2005.01.020 | es_ES |
dc.description.references | Roberge, F. A., Vinet, A., & Victorri, B. (1986). Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle. Circulation Research, 58(4), 461-475. doi:10.1161/01.res.58.4.461 | es_ES |
dc.description.references | Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2 | es_ES |
dc.description.references | NARAYAN, S. M., KRUMMEN, D. E., & RAPPEL, W.-J. (2012). Clinical Mapping Approach To Diagnose Electrical Rotors and Focal Impulse Sources for Human Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 23(5), 447-454. doi:10.1111/j.1540-8167.2012.02332.x | es_ES |
dc.description.references | Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297 | es_ES |
dc.description.references | Pincus, S. M., & Goldberger, A. L. (1994). Physiological time-series analysis: what does regularity quantify? American Journal of Physiology-Heart and Circulatory Physiology, 266(4), H1643-H1656. doi:10.1152/ajpheart.1994.266.4.h1643 | es_ES |
dc.description.references | Alcaraz, R., & Rieta, J. J. (2010). A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal Processing and Control, 5(1), 1-14. doi:10.1016/j.bspc.2009.11.001 | es_ES |
dc.description.references | Křemen, V., Lhotská, L., Macaš, M., Čihák, R., Vančura, V., Kautzner, J., & Wichterle, D. (2008). A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation. Physiological Measurement, 29(12), 1371-1381. doi:10.1088/0967-3334/29/12/002 | es_ES |
dc.description.references | Kremen V, Kordik P, Lhotska L (2009) Comparison of several classifiers to evaluate endocardial electrograms fractionation in human. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. pp. 2502–2505. | es_ES |
dc.description.references | Kremen V (2008) Automated assessment of endocardial electrograms fractionation in human. Ph.D. thesis, Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics. | es_ES |
dc.description.references | Schilling C (2012) Analysis of Atrial Electrograms, volume 17. Karlrsruhe: KIT Scientific Publishing. | es_ES |
dc.description.references | Pincus, S. M. (1992). Approximating Markov chains. Proceedings of the National Academy of Sciences, 89(10), 4432-4436. doi:10.1073/pnas.89.10.4432 | es_ES |
dc.description.references | Konings, K. T. S., Smeets, J. L. R. M., Penn, O. C., Wellens, H. J. J., & Allessie, M. A. (1997). Configuration of Unipolar Atrial Electrograms During Electrically Induced Atrial Fibrillation in Humans. Circulation, 95(5), 1231-1241. doi:10.1161/01.cir.95.5.1231 | es_ES |
dc.description.references | JACQUEMET, V., VIRAG, N., IHARA, Z., DANG, L., BLANC, O., ZOZOR, S., … HENRIQUEZ, C. (2003). Study of Unipolar Electrogram Morphology in a Computer Model of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 14(s10), S172-S179. doi:10.1046/j.1540.8167.90308.x | es_ES |
dc.description.references | Nademanee, K., Lockwood, E., Oketani, N., & Gidney, B. (2010). Catheter ablation of atrial fibrillation guided by complex fractionated atrial electrogram mapping of atrial fibrillation substrate. Journal of Cardiology, 55(1), 1-12. doi:10.1016/j.jjcc.2009.11.002 | es_ES |
dc.description.references | Pincus, S., & Singer, B. H. (1996). Randomness and degrees of irregularity. Proceedings of the National Academy of Sciences, 93(5), 2083-2088. doi:10.1073/pnas.93.5.2083 | es_ES |
dc.description.references | Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D., & Stergiou, N. (2012). The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Annals of Biomedical Engineering, 41(2), 349-365. doi:10.1007/s10439-012-0668-3 | es_ES |
dc.description.references | Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039 | es_ES |
dc.description.references | HOEKSTRA, B. P. T., DIKS, C. G. H., ALLESSIE, M. A., & GOEDB, J. (1995). Nonlinear Analysis of Epicardial Atrial Electrograms of Electrically Induced Atrial Fibrillation in Man. Journal of Cardiovascular Electrophysiology, 6(6), 419-440. doi:10.1111/j.1540-8167.1995.tb00416.x | es_ES |
dc.description.references | Anier, A., Lipping, T., Ferenets, R., Puumala, P., Sonkajärvi, E., Rätsep, I., & Jäntti, V. (2012). Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy. British Journal of Anaesthesia, 109(6), 928-934. doi:10.1093/bja/aes312 | es_ES |
dc.description.references | Scherr, D., Dalal, D., Cheema, A., Cheng, A., Henrikson, C. A., Spragg, D., … Dong, J. (2007). Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm, 4(8), 1013-1020. doi:10.1016/j.hrthm.2007.04.021 | es_ES |
dc.description.references | Hunter, R. J., Diab, I., Tayebjee, M., Richmond, L., Sporton, S., Earley, M. J., & Schilling, R. J. (2011). Characterization of Fractionated Atrial Electrograms Critical for Maintenance of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 4(5), 622-629. doi:10.1161/circep.111.962928 | es_ES |