De Bakker, J. M. T., & Wittkampf, F. H. M. (2010). The Pathophysiologic Basis of Fractionated and Complex Electrograms and the Impact of Recording Techniques on Their Detection and Interpretation. Circulation: Arrhythmia and Electrophysiology, 3(2), 204-213. doi:10.1161/circep.109.904763
Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054
Reddy, V. Y. (2009). Atrial Fibrillation: Unanswered Questions and Future Directions. Cardiology Clinics, 27(1), 201-216. doi:10.1016/j.ccl.2008.10.002
[+]
De Bakker, J. M. T., & Wittkampf, F. H. M. (2010). The Pathophysiologic Basis of Fractionated and Complex Electrograms and the Impact of Recording Techniques on Their Detection and Interpretation. Circulation: Arrhythmia and Electrophysiology, 3(2), 204-213. doi:10.1161/circep.109.904763
Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054
Reddy, V. Y. (2009). Atrial Fibrillation: Unanswered Questions and Future Directions. Cardiology Clinics, 27(1), 201-216. doi:10.1016/j.ccl.2008.10.002
Jadidi, A. S., Duncan, E., Miyazaki, S., Lellouche, N., Shah, A. J., Forclaz, A., … Jaïs, P. (2012). Functional Nature of Electrogram Fractionation Demonstrated by Left Atrial High-Density Mapping. Circulation: Arrhythmia and Electrophysiology, 5(1), 32-42. doi:10.1161/circep.111.964197
Ciaccio, E. J., Biviano, A. B., Whang, W., & Garan, H. (2012). Identification of recurring patterns in fractionated atrial electrograms using new transform coefficients. BioMedical Engineering OnLine, 11(1), 4. doi:10.1186/1475-925x-11-4
Ganesan, A. N., Kuklik, P., Lau, D. H., Brooks, A. G., Baumert, M., Lim, W. W., … Sanders, P. (2013). Bipolar Electrogram Shannon Entropy at Sites of Rotational Activation. Circulation: Arrhythmia and Electrophysiology, 6(1), 48-57. doi:10.1161/circep.112.976654
Navoret, N., Jacquir, S., Laurent, G., & Binczak, S. (2013). Detection of Complex Fractionated Atrial Electrograms Using Recurrence Quantification Analysis. IEEE Transactions on Biomedical Engineering, 60(7), 1975-1982. doi:10.1109/tbme.2013.2247402
Skanes, A. C., Mandapati, R., Berenfeld, O., Davidenko, J. M., & Jalife, J. (1998). Spatiotemporal Periodicity During Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 98(12), 1236-1248. doi:10.1161/01.cir.98.12.1236
Umapathy, K., Masse, S., Kolodziejska, K., Veenhuyzen, G. D., Chauhan, V. S., Husain, M., … Nanthakumar, K. (2008). Electrogram fractionation in murine HL-1 atrial monolayer model. Heart Rhythm, 5(7), 1029-1035. doi:10.1016/j.hrthm.2008.03.022
Zlochiver, S., Yamazaki, M., Kalifa, J., & Berenfeld, O. (2008). Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm, 5(6), 846-854. doi:10.1016/j.hrthm.2008.03.010
Narayan, S. M., Patel, J., Mulpuru, S., & Krummen, D. E. (2012). Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with elimination on follow-up: A video case study. Heart Rhythm, 9(9), 1436-1439. doi:10.1016/j.hrthm.2012.03.055
Narayan, S. M., Shivkumar, K., Krummen, D. E., Miller, J. M., & Rappel, W.-J. (2013). Panoramic Electrophysiological Mapping but not Electrogram Morphology Identifies Stable Sources for Human Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 6(1), 58-67. doi:10.1161/circep.111.977264
Tobón, C., Ruiz-Villa, C. A., Heidenreich, E., Romero, L., Hornero, F., & Saiz, J. (2013). A Three-Dimensional Human Atrial Model with Fiber Orientation. Electrograms and Arrhythmic Activation Patterns Relationship. PLoS ONE, 8(2), e50883. doi:10.1371/journal.pone.0050883
Kneller, J., Zou, R., Vigmond, E. J., Wang, Z., Leon, L. J., & Nattel, S. (2002). Cholinergic Atrial Fibrillation in a Computer Model of a Two-Dimensional Sheet of Canine Atrial Cells With Realistic Ionic Properties. Circulation Research, 90(9). doi:10.1161/01.res.0000019783.88094.ba
Bosch, R. (1999). Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovascular Research, 44(1), 121-131. doi:10.1016/s0008-6363(99)00178-9
Workman, A. (2001). The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Research, 52(2), 226-235. doi:10.1016/s0008-6363(01)00380-7
WAGONER, D. R. V. (2003). Electrophysiological Remodeling in Human Atrial Fibrillation. Pacing and Clinical Electrophysiology, 26(7p2), 1572-1575. doi:10.1046/j.1460-9592.2003.t01-1-00234.x
ZHANG, H., GARRATT, C., ZHU, J., & HOLDEN, A. (2005). Role of up-regulation of in action potential shortening associated with atrial fibrillation in humans. Cardiovascular Research, 66(3), 493-502. doi:10.1016/j.cardiores.2005.01.020
Roberge, F. A., Vinet, A., & Victorri, B. (1986). Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle. Circulation Research, 58(4), 461-475. doi:10.1161/01.res.58.4.461
Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2
NARAYAN, S. M., KRUMMEN, D. E., & RAPPEL, W.-J. (2012). Clinical Mapping Approach To Diagnose Electrical Rotors and Focal Impulse Sources for Human Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 23(5), 447-454. doi:10.1111/j.1540-8167.2012.02332.x
Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297
Pincus, S. M., & Goldberger, A. L. (1994). Physiological time-series analysis: what does regularity quantify? American Journal of Physiology-Heart and Circulatory Physiology, 266(4), H1643-H1656. doi:10.1152/ajpheart.1994.266.4.h1643
Alcaraz, R., & Rieta, J. J. (2010). A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal Processing and Control, 5(1), 1-14. doi:10.1016/j.bspc.2009.11.001
Křemen, V., Lhotská, L., Macaš, M., Čihák, R., Vančura, V., Kautzner, J., & Wichterle, D. (2008). A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation. Physiological Measurement, 29(12), 1371-1381. doi:10.1088/0967-3334/29/12/002
Kremen V, Kordik P, Lhotska L (2009) Comparison of several classifiers to evaluate endocardial electrograms fractionation in human. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. pp. 2502–2505.
Kremen V (2008) Automated assessment of endocardial electrograms fractionation in human. Ph.D. thesis, Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics.
Schilling C (2012) Analysis of Atrial Electrograms, volume 17. Karlrsruhe: KIT Scientific Publishing.
Pincus, S. M. (1992). Approximating Markov chains. Proceedings of the National Academy of Sciences, 89(10), 4432-4436. doi:10.1073/pnas.89.10.4432
Konings, K. T. S., Smeets, J. L. R. M., Penn, O. C., Wellens, H. J. J., & Allessie, M. A. (1997). Configuration of Unipolar Atrial Electrograms During Electrically Induced Atrial Fibrillation in Humans. Circulation, 95(5), 1231-1241. doi:10.1161/01.cir.95.5.1231
JACQUEMET, V., VIRAG, N., IHARA, Z., DANG, L., BLANC, O., ZOZOR, S., … HENRIQUEZ, C. (2003). Study of Unipolar Electrogram Morphology in a Computer Model of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 14(s10), S172-S179. doi:10.1046/j.1540.8167.90308.x
Nademanee, K., Lockwood, E., Oketani, N., & Gidney, B. (2010). Catheter ablation of atrial fibrillation guided by complex fractionated atrial electrogram mapping of atrial fibrillation substrate. Journal of Cardiology, 55(1), 1-12. doi:10.1016/j.jjcc.2009.11.002
Pincus, S., & Singer, B. H. (1996). Randomness and degrees of irregularity. Proceedings of the National Academy of Sciences, 93(5), 2083-2088. doi:10.1073/pnas.93.5.2083
Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D., & Stergiou, N. (2012). The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Annals of Biomedical Engineering, 41(2), 349-365. doi:10.1007/s10439-012-0668-3
Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039
HOEKSTRA, B. P. T., DIKS, C. G. H., ALLESSIE, M. A., & GOEDB, J. (1995). Nonlinear Analysis of Epicardial Atrial Electrograms of Electrically Induced Atrial Fibrillation in Man. Journal of Cardiovascular Electrophysiology, 6(6), 419-440. doi:10.1111/j.1540-8167.1995.tb00416.x
Anier, A., Lipping, T., Ferenets, R., Puumala, P., Sonkajärvi, E., Rätsep, I., & Jäntti, V. (2012). Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy. British Journal of Anaesthesia, 109(6), 928-934. doi:10.1093/bja/aes312
Scherr, D., Dalal, D., Cheema, A., Cheng, A., Henrikson, C. A., Spragg, D., … Dong, J. (2007). Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm, 4(8), 1013-1020. doi:10.1016/j.hrthm.2007.04.021
Hunter, R. J., Diab, I., Tayebjee, M., Richmond, L., Sporton, S., Earley, M. J., & Schilling, R. J. (2011). Characterization of Fractionated Atrial Electrograms Critical for Maintenance of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 4(5), 622-629. doi:10.1161/circep.111.962928
[-]