- -

Influence of homogenization conditions on physical properties and antioxidant activity of fully biodegradable pea protein-alpha-tocopherol films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of homogenization conditions on physical properties and antioxidant activity of fully biodegradable pea protein-alpha-tocopherol films

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fabra, M. José es_ES
dc.contributor.author Jiménez, Alberto es_ES
dc.contributor.author Talens Oliag, Pau es_ES
dc.contributor.author Chiralt, A. es_ES
dc.date.accessioned 2016-01-15T08:36:18Z
dc.date.available 2016-01-15T08:36:18Z
dc.date.issued 2014-12
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/59913
dc.description.abstract In this study, antioxidant biodegradable films based on pea protein and alpha-tocopherol were successfully developed by solution casting. The effect of both the homogenization conditions (rotor stator and microfluidizer) and the relative humidity (RH) on the microstructure and physical properties (transparency, tensile, oxygen and water vapour barrier properties) of pea protein/alpha-tocopherol-based films was evaluated. The addition of alpha-tocopherol produced minimal changes in the films transparency, while providing them with antioxidant properties and improved water vapour and oxygen barrier properties (up to 30 % in both water vapour and oxygen permeability) when films were at low and intermediate RH. The addition of alpha-tocopherol in microfluidized films gave rise to an increase in their resistance to break and extensibility (up to 27 % in E values) at intermediate and high RH. These results add a new insight into the potential of employing pea protein and alpha-tocopherol in the development of fully biodegradable antioxidant films which are of interest in food packaging es_ES
dc.description.sponsorship The authors acknowledge the financial support from the Spanish Ministerio de Educacion y Ciencia throughout the project AGL2010-20694, co-funded by FEDER. Author M.J.Fabra is a recipient of a Juan de la Cierva contract from the Spanish Ministerio de Economia y Competitividad. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antioxidant capacity es_ES
dc.subject Oxygen permeability es_ES
dc.subject Water vapour permeability es_ES
dc.subject Tensile properties es_ES
dc.subject Pea protein es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Influence of homogenization conditions on physical properties and antioxidant activity of fully biodegradable pea protein-alpha-tocopherol films es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-014-1372-0
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2010-20694/ES/FILMS Y RECUBRIMIENTOS COMESTIBLES%2FBIODEGRADABLES, CON ACTIVIDAD ANTIMICROBIANA Y ANTIOXIDANTE, PARA USO ALIMENTARIO. UTILIZACION DE PROCESADO EN HUMEDO Y EN SECO./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Fabra, MJ.; Jiménez, A.; Talens Oliag, P.; Chiralt, A. (2014). Influence of homogenization conditions on physical properties and antioxidant activity of fully biodegradable pea protein-alpha-tocopherol films. Food and Bioprocess Technology. 7(12):3569-3578. https://doi.org/10.1007/s11947-014-1372-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11947-014-1372-0 es_ES
dc.description.upvformatpinicio 3569 es_ES
dc.description.upvformatpfin 3578 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 282516 es_ES
dc.identifier.eissn 1935-5149
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references ASTM (1995). Standard test methods for water vapor transmission of materials. Standards Desingnations: E96-95. In: Annual Book of ASTM Standards (pp. 406-413); American Society for Testing and Materials: Philadelphia, PA. es_ES
dc.description.references ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. In: Annual book of American Standard Testing Methods (pp 162-170). D882. Philadelphia:ASTM. es_ES
dc.description.references Bertan, L. C., Tanada-Palmu, P. S., Siani, A. C., & Grosso, C. R. F. (2005). Effect of fatty acids and “Brazilian elemi” on composite films based on gelatin. Food Hydrocolloids, 19(1), 73–82. es_ES
dc.description.references Byun, Y., Kim, Y. T., & Whiteside, S. (2010). Characterization of an antioxidant polylactic acid (PLA) film prepared with alpha-tocopherol, BHT and polyethylene glycol using film cast extruder. Journal of Food Engineering, 100, 239–244. es_ES
dc.description.references Cerqueira, M. A., Costa, M. J., Fuciños, C., Pastrana, L. M., & Vicente, A. A. (2014). Development of active and nanotechnology-based smart edible packaging systems: physical-chemical characterization. Food and Bioprocess Technology, 7(5), 1472–1482. es_ES
dc.description.references Choi, W. S., & Han, J. H. (2001). Physical and mechanical properties of pea–protein-based edible films. Journal of Food Science, 66, 319–322. es_ES
dc.description.references Choi, W. S., & Han, J. H. (2002). Film-forming mechanism and heat denaturation effects on the physical and chemical properties of pea-protein-isolate edible films. Journal of Food Science, 67, 1399–1406. es_ES
dc.description.references Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acidebeeswax mixtures. Food Hydrocolloids, 23, 676–683. es_ES
dc.description.references Fabra, M. J., Talens, P., & Chiralt, A. (2010). Water sorption isotherms and phase transitions of sodium caseinate–lipid films as affected by lipid interactions. Food Hydrocolloids, 24, 384–391. es_ES
dc.description.references Fabra, M. J., Hambleton, A., Talens, P., Debeaufort, F., & Chiralt, A. (2011). Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocolloids, 25, 1441–1447. es_ES
dc.description.references Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109, 372–379. es_ES
dc.description.references Frankel, E. N., Huang, S. W., Kanner, J., & German, J. B. (1994). Interfacial phenomena in the evaluation of antioxidants: bulk oils vs emulsions. Journal of Agriculture and Food Chemistry, 42(5), 1054–1059. es_ES
dc.description.references Gómez-Estaca, J., Giménez, B., Montero, P., & Gómez-Guillén, M. C. (2009). Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. Journal of Food Engineering, 92, 78–85. es_ES
dc.description.references Huang, S. W., Frankel, E. N., & German, J. B. (1994). Antioxidant activity of alpha.- and.gamma.-tocopherols in bulk oils and in oil-in-water emulsions. Journal of Agriculture and Food Chemistry, 42(10), 2108–2114. es_ES
dc.description.references Hutchings, J. B. (1999). Food and colour appearance (2nd ed.). Gaithersburg: Chapman and Hall Food Science Book, Aspen Publication. es_ES
dc.description.references Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2010). Effect of lipid self-association on the microstructure and physical properties of hydroxypropylmethylcellulose edible films containing fatty acids. Carbohydrate Polymers, 82(3), 585–593. es_ES
dc.description.references Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013). Physical properties and antioxidant capacity of starch-sodium caseinate films containing lipids. Journal of Food Engineering, 116(3), 695–702. es_ES
dc.description.references Jung, M. Y., & Min, D. B. (1990). Effects of alpha-. γ-, and δ-tocopherols on oxidative stability of soybean oil. Journal of Food Science, 55(5), 1464–1465. es_ES
dc.description.references López-de-Dicastillo, C., Alonso, J. M., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2010). Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) films. Journal of Agricultural and Food Chemistry, 58, 10958–10964. es_ES
dc.description.references Ma, W., Tang, C.-H., Yin, S.-W., Yang, X. Q., Qi, J. R., & Xia, N. (2012). Effect of homogenization conditions on properties of gelatin-olive oil composite films. Journal of Food Engineering, 113(1), 136–142. es_ES
dc.description.references Mauer, L. J., Smith, D. E., & Labuza, T. P. (2000). Water vapor permeability, mechanical, and structural properties of edible β-casein films. International Dairy Journal, 10(5–6), 353–358. es_ES
dc.description.references Mc Hugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophobic edible films:modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–903. es_ES
dc.description.references McHugh, T. H., & Krochta, J. M. (1994). Dispersed phase particle size effects on water vapour permeability of whey protein–beeswax emulsion films. Journal of Food Processing and Preservation, 18, 173–188. es_ES
dc.description.references Ozkan, G., Simsek, B., & Kuleasan, H. (2007). Antioxidant activities of Satureja cilicica essential oil in butter and in vitro. Journal of Food Engineering, 79, 1391–1396. es_ES
dc.description.references Pereira de Abreu, D. A., Paseiro Losada, P., Maroto, J., & Cruz, J. M. (2011). Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innovative Food Science and Emerging Technologies, 12, 50–55. es_ES
dc.description.references Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decoloration assay. Free Radical Biology and Medicine, 26, 1231–1237. es_ES
dc.description.references Roos, Y. H. (1995). Phase transitions in food. San Diego: Academic Press. es_ES
dc.description.references Salgado, P. R., Molina Ortiz, S. E., Petruccelli, S., & Mauri, A. N. (2010). Biodegradable sunflower protein films naturally activated with antioxidant compounds. Food Hydrocolloids, 24(5), 525–533. es_ES
dc.description.references Salgado, P. R., Fernández, G. B., Drago, S. R., & Mauri, A. N. (2011). Addition of bovine plasma hydrolysates improves the antioxidant properties of soybean and sunflower protein-based films. Food Hydrocolloids, 25, 1433–1440. es_ES
dc.description.references Samaranayaka, A. G. P., & Li-Chan, E. C. Y. (2008). Autolysis-assisted production of fish protein hydrolysates with antioxidant properties form Pacific hake (Merluccius productus). Food Chemistry, 107, 768–776. es_ES
dc.description.references Souza, B. W. S., Cerqueira, A., Casariego, A., Lima, A. M. P., Teixeira, J. A., & Vicente, A. A. (2009). Effect of moderate electric fields in the permeation properties of chitosan coatings. Food Hydrocolloids, 23, 2110–2115. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem