- -

Analysis of organic compounds in an urban wastewater treatment plant effluent

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of organic compounds in an urban wastewater treatment plant effluent

Mostrar el registro completo del ítem

Navalón Oltra, S.; Alvaro Rodríguez, MM.; García Gómez, H. (2011). Analysis of organic compounds in an urban wastewater treatment plant effluent. Environmental Technology. 32(3):295-306. https://doi.org/10.1080/09593330.2010.497501

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59961

Ficheros en el ítem

Metadatos del ítem

Título: Analysis of organic compounds in an urban wastewater treatment plant effluent
Autor: Navalón Oltra, Sergio Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
In the present work we fractioned the effluent water from an urban sewage treatment plant (USTP) of Ribarroja (Valencia, Spain) using the conventional protocol based on DAX8 and XAD4 resins. The fractions were analyzed by ...[+]
Palabras clave: Urban wastewater effluent , Dissolved organic matter analysis , NMR spectroscopy , Mass spectroscopy , Emergent pollutants
Derechos de uso: Cerrado
Fuente:
Environmental Technology. (issn: 0959-3330 ) (eissn: 1479-487X )
DOI: 10.1080/09593330.2010.497501
Editorial:
Taylor & Francis
Versión del editor: http://dx.doi.org/10.1080/09593330.2010.497501
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/Ruptura Fotocaliftica del Agua con Luz Solar/
Agradecimientos:
Financial support from the Spanish DGI (CTQ 2009-11583) is gratefully acknowledged. S. Navalon thanks the Technical University of Valencia for a postgraduate research contract (Cantera Programme). We are indebted to the ...[+]
Tipo: Artículo

References

Comerton, A. M., Andrews, R. C., & Bagley, D. M. (2005). Evaluation of an MBR–RO system to produce high quality reuse water: Microbial control, DBP formation and nitrate. Water Research, 39(16), 3982-3990. doi:10.1016/j.watres.2005.07.014

Asano, T. (2002). Water from (waste)water – the dependable water resource (The 2001 Stockholm Water Prize Laureate Lecture). Water Science and Technology, 45(8), 23-33. doi:10.2166/wst.2002.0137

Wang, J. (s. f.). Riverbank Filtration Case Study at Louisville, Kentucky. Water Science and Technology Library, 117-145. doi:10.1007/0-306-48154-5_8 [+]
Comerton, A. M., Andrews, R. C., & Bagley, D. M. (2005). Evaluation of an MBR–RO system to produce high quality reuse water: Microbial control, DBP formation and nitrate. Water Research, 39(16), 3982-3990. doi:10.1016/j.watres.2005.07.014

Asano, T. (2002). Water from (waste)water – the dependable water resource (The 2001 Stockholm Water Prize Laureate Lecture). Water Science and Technology, 45(8), 23-33. doi:10.2166/wst.2002.0137

Wang, J. (s. f.). Riverbank Filtration Case Study at Louisville, Kentucky. Water Science and Technology Library, 117-145. doi:10.1007/0-306-48154-5_8

Madera, C. A., Silva, J., Mara, D. D., & Torres, P. (2009). Wastewater use in agriculture: Irrigation of sugar cane with effluents from the Cañaveralejo wastewater treatment plant in Cali, Colombia. Environmental Technology, 30(10), 1011-1015. doi:10.1080/09593330903020498

Chung, H., Ku, B., & Gregory, J. (2008). DEVELOPMENT OF AN ADVANCED WATER TREATMENT SYSTEM FOR WASTEWATER REUSE. Environmental Technology, 29(9), 931-939. doi:10.1080/09593330802318894

Kraigher, B., Kosjek, T., Heath, E., Kompare, B., & Mandic-Mulec, I. (2008). Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Research, 42(17), 4578-4588. doi:10.1016/j.watres.2008.08.006

Carballa, M., Omil, F., Lema, J. M., Llompart, M., Garcı́a-Jares, C., Rodrı́guez, I., … Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38(12), 2918-2926. doi:10.1016/j.watres.2004.03.029

Imai, A., Fukushima, T., Matsushige, K., Kim, Y.-H., & Choi, K. (2002). Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Research, 36(4), 859-870. doi:10.1016/s0043-1354(01)00283-4

Berset, J. D., & Holzer, R. (1995). Organic Micropollutants in Swiss Agriculture: Distribution of Polynuclear Aromatic Hydrocarbons (PAH) and Polychlorinated Biphenyls (PCB) in Soil, Liquid Manure, Sewage Sludge and Compost Samples; a Comparative Study. International Journal of Environmental Analytical Chemistry, 59(2-4), 145-165. doi:10.1080/03067319508041324

Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2009). The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research, 43(2), 363-380. doi:10.1016/j.watres.2008.10.047

Jones, O. A. H., Voulvoulis, N., & Lester, J. N. (2001). Human Pharmaceuticals in the Aquatic Environment a Review. Environmental Technology, 22(12), 1383-1394. doi:10.1080/09593332208618186

Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers1Dedicated to Professor Dr. Klaus Haberer on the occasion of his 70th birthday.1. Water Research, 32(11), 3245-3260. doi:10.1016/s0043-1354(98)00099-2

Ma, H. (2001). Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Research, 35(4), 985-996. doi:10.1016/s0043-1354(00)00350-x

Thurman, E. M., & Malcolm, R. L. (1981). Preparative isolation of aquatic humic substances. Environmental Science & Technology, 15(4), 463-466. doi:10.1021/es00086a012

Wei, L., Zhao, Q., Xue, S., & Jia, T. (2008). Removal and transformation of dissolved organic matter in secondary effluent during granular activated carbon treatment. Journal of Zhejiang University-SCIENCE A, 9(7), 994-1003. doi:10.1631/jzus.a071508

Belin, C., Quellec, C., Lamotte, M., Ewald, M., & Simon, P. (1993). Characterization by fluorescence of the dissolved organic matter in natural water. application to fractions obtained by tangential ultrafiltration and XAD resin isolation. Environmental Technology, 14(12), 1131-1144. doi:10.1080/09593339309385391

Park, S., Joe, K. S., Han, S. H., & Kim, H. S. (1999). Characteristics of Dissolved Organic Carbon in the Leachate from Moonam Sanitary Landfill. Environmental Technology, 20(4), 419-424. doi:10.1080/09593332008616835

Navalon, S., Alvaro, M., & Garcia, H. (2008). Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three β-lactam antibiotics with ClO2. Water Research, 42(8-9), 1935-1942. doi:10.1016/j.watres.2007.11.023

Zhang, H., Qu, J., Liu, H., & Zhao, X. (2009). Characterization of isolated fractions of dissolved organic matter from sewage treatment plant and the related disinfection by-products formation potential. Journal of Hazardous Materials, 164(2-3), 1433-1438. doi:10.1016/j.jhazmat.2008.09.057

Wang, L.-S., Hu, H.-Y., & Wang, C. (2007). Effect of Ammonia Nitrogen and Dissolved Organic Matter Fractions on the Genotoxicity of Wastewater Effluent during Chlorine Disinfection. Environmental Science & Technology, 41(1), 160-165. doi:10.1021/es0616635

Xue, S., Zhao, Q.-L., Wei, L.-L., & Jia, T. (2008). Effect of bromide ion on isolated fractions of dissolved organic matter in secondary effluent during chlorination. Journal of Hazardous Materials, 157(1), 25-33. doi:10.1016/j.jhazmat.2007.12.071

Santos, P. S. M., Otero, M., Duarte, R. M. B. O., & Duarte, A. C. (2009). Spectroscopic characterization of dissolved organic matter isolated from rainwater. Chemosphere, 74(8), 1053-1061. doi:10.1016/j.chemosphere.2008.10.061

Simpson, A. J., Lefebvre, B., Moser, A., Williams, A., Larin, N., Kvasha, M., … Kelleher, B. (2003). Identifying residues in natural organic matter through spectral prediction and pattern matching of 2D NMR datasets. Magnetic Resonance in Chemistry, 42(1), 14-22. doi:10.1002/mrc.1308

Kovac, N., Bajt, O., Faganeli, J., Sket, B., & Orel, B. (2002). Study of macroaggregate composition using FT-IR and 1H-NMR spectroscopy. Marine Chemistry, 78(4), 205-215. doi:10.1016/s0304-4203(02)00033-6

Oldfield, E. (2002). CHEMICAL SHIFTS IN AMINO ACIDS, PEPTIDES, AND PROTEINS: From Quantum Chemistry to Drug Design. Annual Review of Physical Chemistry, 53(1), 349-378. doi:10.1146/annurev.physchem.53.082201.124235

Widmalm, G. (2007). General NMR Spectroscopy of Carbohydrates and Conformational Analysis in Solution. Comprehensive Glycoscience, 101-132. doi:10.1016/b978-044451967-2/00025-8

Baldock, J. A., Oades, J. M., Vassallo, A. M., & Wilson, M. A. (1990). Significance of microbial activity in soils as demonstrated by solid-state carbon-13 NMR. Environmental Science & Technology, 24(4), 527-530. doi:10.1021/es00074a010

Knicker, H. (2000). Biogenic Nitrogen in Soils as Revealed by Solid-State Carbon-13 and Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy. Journal of Environment Quality, 29(3), 715. doi:10.2134/jeq2000.00472425002900030005x

Kögel-Knabner, I. (1997). 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma, 80(3-4), 243-270. doi:10.1016/s0016-7061(97)00055-4

Duarte, R. M. B. O., Silva, A. M. S., & Duarte, A. C. (2008). Two-Dimensional NMR Studies of Water-Soluble Organic Matter in Atmospheric Aerosols. Environmental Science & Technology, 42(22), 8224-8230. doi:10.1021/es801298s

Henderson, R. K., Baker, A., Parsons, S. A., & Jefferson, B. (2008). Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research, 42(13), 3435-3445. doi:10.1016/j.watres.2007.10.032

Prats, D., Rodrguez, M., Varo, P., Moreno, A., Ferrer, J., & Berna, J. L. (1999). Biodegradation of soap in anaerobic digesters and on sludge amended soils. Water Research, 33(1), 105-108. doi:10.1016/s0043-1354(98)00199-7

Grimalt, J. O., Fernandez, P., Bayona, J. M., & Albaiges, J. (1990). Assessment of fecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Environmental Science & Technology, 24(3), 357-363. doi:10.1021/es00073a011

Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000:  A National Reconnaissance. Environmental Science & Technology, 36(6), 1202-1211. doi:10.1021/es011055j

ROBERTS, P., & THOMAS, K. (2006). The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of The Total Environment, 356(1-3), 143-153. doi:10.1016/j.scitotenv.2005.04.031

Santos, J. L., Aparicio, I., Callejón, M., & Alonso, E. (2009). Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). Journal of Hazardous Materials, 164(2-3), 1509-1516. doi:10.1016/j.jhazmat.2008.09.073

Bond, T., Henriet, O., Goslan, E. H., Parsons, S. A., & Jefferson, B. (2009). Disinfection Byproduct Formation and Fractionation Behavior of Natural Organic Matter Surrogates. Environmental Science & Technology, 43(15), 5982-5989. doi:10.1021/es900686p

Katsoyiannis, A., & Samara, C. (2006). The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Environmental Science and Pollution Research - International, 14(5), 284-292. doi:10.1065/espr2006.05.302

Yang, X., Shang, C., Lee, W., Westerhoff, P., & Fan, C. (2008). Correlations between organic matter properties and DBP formation during chloramination. Water Research, 42(8-9), 2329-2339. doi:10.1016/j.watres.2007.12.021

Pernet-coudrier, B., Clouzot, L., Varrault, G., Tusseau-vuillemin, M.-H., Verger, A., & Mouchel, J.-M. (2008). Dissolved organic matter from treated effluent of a major wastewater treatment plant: Characterization and influence on copper toxicity. Chemosphere, 73(4), 593-599. doi:10.1016/j.chemosphere.2008.05.064

Gyurcsik, B., & Nagy, L. (2000). Carbohydrates as ligands: coordination equilibria and structure of the metal complexes. Coordination Chemistry Reviews, 203(1), 81-149. doi:10.1016/s0010-8545(99)00183-6

Kabra, K., Chaudhary, R., & Sawhney, R. L. (2008). Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal–citric acid complexes. Journal of Hazardous Materials, 155(3), 424-432. doi:10.1016/j.jhazmat.2007.11.083

Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P. F., Ingerslev, F., Holten Lützhøft, H. C., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment- A review. Chemosphere, 36(2), 357-393. doi:10.1016/s0045-6535(97)00354-8

Ikehata, K., Jodeiri Naghashkar, N., & Gamal El-Din, M. (2006). Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. Ozone: Science & Engineering, 28(6), 353-414. doi:10.1080/01919510600985937

Zwiener, C. (2000). Oxidative treatment of pharmaceuticals in water. Water Research, 34(6), 1881-1885. doi:10.1016/s0043-1354(99)00338-3

Oliver, B. G., & Shindler, D. B. (1980). Trihalomethanes from the chlorination of aquatic algae. Environmental Science & Technology, 14(12), 1502-1505. doi:10.1021/es60172a004

Navalon, S., Alvaro, M., & Garcia, H. (2008). Carbohydrates as trihalomethanes precursors. Influence of pH and the presence of Cl− and Br− on trihalomethane formation potential. Water Research, 42(14), 3990-4000. doi:10.1016/j.watres.2008.07.011

Navalon, S., Alvaro, M., & Garcia, H. (2009). Ca2+ and Mg2+ present in hard waters enhance trihalomethane formation. Journal of Hazardous Materials, 169(1-3), 901-906. doi:10.1016/j.jhazmat.2009.04.031

Scully, F. E., Howell, G. D., Kravitz, R., Jewell, J. T., Hahn, V., & Speed, M. (1988). Proteins in natural waters and their relation to the formation of chlorinated organics during water disinfection. Environmental Science & Technology, 22(5), 537-542. doi:10.1021/es00170a009

Hureiki, L., Croué, J. P., & Legube, B. (1994). Chlorination studies of free and combined amino acids. Water Research, 28(12), 2521-2531. doi:10.1016/0043-1354(94)90070-1

Larson, R. A., & Rockwell, A. L. (1979). Chloroform and chlorophenol production by decarboxylation of natural acids during aqueous chlorination. Environmental Science & Technology, 13(3), 325-329. doi:10.1021/es60151a014

Dickenson, E. R. V., Summers, R. S., Croué, J.-P., & Gallard, H. (2008). Haloacetic acid and Trihalomethane Formation from the Chlorination and Bromination of Aliphatic β-Dicarbonyl Acid Model Compounds. Environmental Science & Technology, 42(9), 3226-3233. doi:10.1021/es0711866

Jardé, E., Mansuy, L., & Faure, P. (2005). Organic markers in the lipidic fraction of sewage sludges. Water Research, 39(7), 1215-1232. doi:10.1016/j.watres.2004.12.024

Ali, M., & Sreekrishnan, T. . (2001). Aquatic toxicity from pulp and paper mill effluents: a review. Advances in Environmental Research, 5(2), 175-196. doi:10.1016/s1093-0191(00)00055-1

Ledakowicz, S., Michniewicz, M., Jagiella, A., Stufka-Olczyk, J., & Martynelis, M. (2006). Elimination of resin acids by advanced oxidation processes and their impact on subsequent biodegradation. Water Research, 40(18), 3439-3446. doi:10.1016/j.watres.2006.06.038

Norwood, D. L., Johnson, J. D., Christman, R. F., Hass, J. R., & Bobenrieth, M. J. (1980). Reactions of chlorine with selected aromatic models of aquatic humic material. Environmental Science & Technology, 14(2), 187-190. doi:10.1021/es60162a012

Beccari, M., Bonemazzi, F., Majone, M., & Riccardi, C. (1996). Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Research, 30(1), 183-189. doi:10.1016/0043-1354(95)00086-z

Mulinacci, N., Romani, A., Galardi, C., Pinelli, P., Giaccherini, C., & Vincieri, F. F. (2001). Polyphenolic Content in Olive Oil Waste Waters and Related Olive Samples. Journal of Agricultural and Food Chemistry, 49(8), 3509-3514. doi:10.1021/jf000972q

Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131(1-2), 5-17. doi:10.1016/s0378-4274(02)00041-3

Ozonation and wet oxidation in the treatment of thermomechanical pulp (TMP) circulation waters. (1999). Water Science and Technology, 40(11-12). doi:10.1016/s0273-1223(99)00700-3

Peng, G., & Roberts, J. C. (2000). Solubility and toxicity of resin acids. Water Research, 34(10), 2779-2785. doi:10.1016/s0043-1354(99)00406-6

Sierra‐Alvarez, R., Kato, M., & Lettinga, G. (1990). The anaerobic biodegradability of paper mill wastewater constituents. Environmental Technology, 11(10), 891-898. doi:10.1080/09593339009384941

Korhonen, S., & Tuhkanen, T. (2000). Effects of Ozone on Resin Acids in Thermomechanical Pulp and Paper Mill Circulation Waters. Ozone: Science & Engineering, 22(6), 575-584. doi:10.1080/01919510009408800

Limitations for biological removal of resin acids from pulp mill effluent. (1999). Water Science and Technology, 40(11-12). doi:10.1016/s0273-1223(99)00729-5

Caravelli, A., Contreras, E. M., Giannuzzi, L., & Zaritzky, N. (2003). Modeling of chlorine effect on floc forming and filamentous micro-organisms of activated sludges. Water Research, 37(9), 2097-2105. doi:10.1016/s0043-1354(02)00601-2

Trehy, M.L. and Bieber, T.I.Proceedings of the ACS Division of Environmental Chemistry. San Francisco, CA. pp.443–446. Washington, DC: American Chemical Society.

Boyce, S. D., & Hornig, J. F. (1983). Reaction pathways of trihalomethane formation from the halogenation of dihydroxyaromatic model compounds for humic acid. Environmental Science & Technology, 17(4), 202-211. doi:10.1021/es00110a005

Reckhow, D. A., Singer, P. C., & Malcolm, R. L. (1990). Chlorination of humic materials: byproduct formation and chemical interpretations. Environmental Science & Technology, 24(11), 1655-1664. doi:10.1021/es00081a005

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem