- -

Analysis of organic compounds in an urban wastewater treatment plant effluent

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Analysis of organic compounds in an urban wastewater treatment plant effluent

Show simple item record

Files in this item

dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-01-18T08:29:46Z
dc.date.available 2016-01-18T08:29:46Z
dc.date.issued 2011
dc.identifier.issn 0959-3330
dc.identifier.uri http://hdl.handle.net/10251/59961
dc.description.abstract In the present work we fractioned the effluent water from an urban sewage treatment plant (USTP) of Ribarroja (Valencia, Spain) using the conventional protocol based on DAX8 and XAD4 resins. The fractions were analyzed by elemental analysis, FT-IR, 1H-NMR, COSY-NMR, HSQC-NMR, FAB+-MS and also by derivatization with bis(trimethylsilyl)trifluoroacetamide with 10% of trimethylchlorosilane. The four fractions obtained have common spectroscopic features and individual compounds indicating that the fractioning procedure is inefficient at separating different families of compounds. Gas chromatography/mass spectrometry (GC-MS) analysis of the derivatized fractions allowed identification of many individual compounds. The main classes of organic compounds present in the effluent are saccharides, amino acids, fatty acids, hydroxyacids, aromatic compounds and steroids. Also we were able to identify in the effluent the emerging pollutants paracetamol and ketoprofen - two best-selling anti-inflammatory drugs used in humans. es_ES
dc.description.sponsorship Financial support from the Spanish DGI (CTQ 2009-11583) is gratefully acknowledged. S. Navalon thanks the Technical University of Valencia for a postgraduate research contract (Cantera Programme). We are indebted to the staff in charge of the Ribarroja del Turia urban wastewater treatment plant (belonging to the Entidad Publica de Saneamiento de Aguas Residuales de la Comunidad Valenciana) for providing samples and analytical data available for the influent and effluent water. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Environmental Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Urban wastewater effluent es_ES
dc.subject Dissolved organic matter analysis es_ES
dc.subject NMR spectroscopy es_ES
dc.subject Mass spectroscopy es_ES
dc.subject Emergent pollutants es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Analysis of organic compounds in an urban wastewater treatment plant effluent es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/09593330.2010.497501
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/Ruptura Fotocaliftica del Agua con Luz Solar/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Navalón Oltra, S.; Alvaro Rodríguez, MM.; García Gómez, H. (2011). Analysis of organic compounds in an urban wastewater treatment plant effluent. Environmental Technology. 32(3):295-306. https://doi.org/10.1080/09593330.2010.497501 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/09593330.2010.497501 es_ES
dc.description.upvformatpinicio 295 es_ES
dc.description.upvformatpfin 306 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 41412 es_ES
dc.identifier.eissn 1479-487X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Comerton, A. M., Andrews, R. C., & Bagley, D. M. (2005). Evaluation of an MBR–RO system to produce high quality reuse water: Microbial control, DBP formation and nitrate. Water Research, 39(16), 3982-3990. doi:10.1016/j.watres.2005.07.014 es_ES
dc.description.references Asano, T. (2002). Water from (waste)water – the dependable water resource (The 2001 Stockholm Water Prize Laureate Lecture). Water Science and Technology, 45(8), 23-33. doi:10.2166/wst.2002.0137 es_ES
dc.description.references Wang, J. (s. f.). Riverbank Filtration Case Study at Louisville, Kentucky. Water Science and Technology Library, 117-145. doi:10.1007/0-306-48154-5_8 es_ES
dc.description.references Madera, C. A., Silva, J., Mara, D. D., & Torres, P. (2009). Wastewater use in agriculture: Irrigation of sugar cane with effluents from the Cañaveralejo wastewater treatment plant in Cali, Colombia. Environmental Technology, 30(10), 1011-1015. doi:10.1080/09593330903020498 es_ES
dc.description.references Chung, H., Ku, B., & Gregory, J. (2008). DEVELOPMENT OF AN ADVANCED WATER TREATMENT SYSTEM FOR WASTEWATER REUSE. Environmental Technology, 29(9), 931-939. doi:10.1080/09593330802318894 es_ES
dc.description.references Kraigher, B., Kosjek, T., Heath, E., Kompare, B., & Mandic-Mulec, I. (2008). Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Research, 42(17), 4578-4588. doi:10.1016/j.watres.2008.08.006 es_ES
dc.description.references Carballa, M., Omil, F., Lema, J. M., Llompart, M., Garcı́a-Jares, C., Rodrı́guez, I., … Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38(12), 2918-2926. doi:10.1016/j.watres.2004.03.029 es_ES
dc.description.references Imai, A., Fukushima, T., Matsushige, K., Kim, Y.-H., & Choi, K. (2002). Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Research, 36(4), 859-870. doi:10.1016/s0043-1354(01)00283-4 es_ES
dc.description.references Berset, J. D., & Holzer, R. (1995). Organic Micropollutants in Swiss Agriculture: Distribution of Polynuclear Aromatic Hydrocarbons (PAH) and Polychlorinated Biphenyls (PCB) in Soil, Liquid Manure, Sewage Sludge and Compost Samples; a Comparative Study. International Journal of Environmental Analytical Chemistry, 59(2-4), 145-165. doi:10.1080/03067319508041324 es_ES
dc.description.references Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2009). The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research, 43(2), 363-380. doi:10.1016/j.watres.2008.10.047 es_ES
dc.description.references Jones, O. A. H., Voulvoulis, N., & Lester, J. N. (2001). Human Pharmaceuticals in the Aquatic Environment a Review. Environmental Technology, 22(12), 1383-1394. doi:10.1080/09593332208618186 es_ES
dc.description.references Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers1Dedicated to Professor Dr. Klaus Haberer on the occasion of his 70th birthday.1. Water Research, 32(11), 3245-3260. doi:10.1016/s0043-1354(98)00099-2 es_ES
dc.description.references Ma, H. (2001). Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Research, 35(4), 985-996. doi:10.1016/s0043-1354(00)00350-x es_ES
dc.description.references Thurman, E. M., & Malcolm, R. L. (1981). Preparative isolation of aquatic humic substances. Environmental Science & Technology, 15(4), 463-466. doi:10.1021/es00086a012 es_ES
dc.description.references Wei, L., Zhao, Q., Xue, S., & Jia, T. (2008). Removal and transformation of dissolved organic matter in secondary effluent during granular activated carbon treatment. Journal of Zhejiang University-SCIENCE A, 9(7), 994-1003. doi:10.1631/jzus.a071508 es_ES
dc.description.references Belin, C., Quellec, C., Lamotte, M., Ewald, M., & Simon, P. (1993). Characterization by fluorescence of the dissolved organic matter in natural water. application to fractions obtained by tangential ultrafiltration and XAD resin isolation. Environmental Technology, 14(12), 1131-1144. doi:10.1080/09593339309385391 es_ES
dc.description.references Park, S., Joe, K. S., Han, S. H., & Kim, H. S. (1999). Characteristics of Dissolved Organic Carbon in the Leachate from Moonam Sanitary Landfill. Environmental Technology, 20(4), 419-424. doi:10.1080/09593332008616835 es_ES
dc.description.references Navalon, S., Alvaro, M., & Garcia, H. (2008). Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three β-lactam antibiotics with ClO2. Water Research, 42(8-9), 1935-1942. doi:10.1016/j.watres.2007.11.023 es_ES
dc.description.references Zhang, H., Qu, J., Liu, H., & Zhao, X. (2009). Characterization of isolated fractions of dissolved organic matter from sewage treatment plant and the related disinfection by-products formation potential. Journal of Hazardous Materials, 164(2-3), 1433-1438. doi:10.1016/j.jhazmat.2008.09.057 es_ES
dc.description.references Wang, L.-S., Hu, H.-Y., & Wang, C. (2007). Effect of Ammonia Nitrogen and Dissolved Organic Matter Fractions on the Genotoxicity of Wastewater Effluent during Chlorine Disinfection. Environmental Science & Technology, 41(1), 160-165. doi:10.1021/es0616635 es_ES
dc.description.references Xue, S., Zhao, Q.-L., Wei, L.-L., & Jia, T. (2008). Effect of bromide ion on isolated fractions of dissolved organic matter in secondary effluent during chlorination. Journal of Hazardous Materials, 157(1), 25-33. doi:10.1016/j.jhazmat.2007.12.071 es_ES
dc.description.references Santos, P. S. M., Otero, M., Duarte, R. M. B. O., & Duarte, A. C. (2009). Spectroscopic characterization of dissolved organic matter isolated from rainwater. Chemosphere, 74(8), 1053-1061. doi:10.1016/j.chemosphere.2008.10.061 es_ES
dc.description.references Simpson, A. J., Lefebvre, B., Moser, A., Williams, A., Larin, N., Kvasha, M., … Kelleher, B. (2003). Identifying residues in natural organic matter through spectral prediction and pattern matching of 2D NMR datasets. Magnetic Resonance in Chemistry, 42(1), 14-22. doi:10.1002/mrc.1308 es_ES
dc.description.references Kovac, N., Bajt, O., Faganeli, J., Sket, B., & Orel, B. (2002). Study of macroaggregate composition using FT-IR and 1H-NMR spectroscopy. Marine Chemistry, 78(4), 205-215. doi:10.1016/s0304-4203(02)00033-6 es_ES
dc.description.references Oldfield, E. (2002). CHEMICAL SHIFTS IN AMINO ACIDS, PEPTIDES, AND PROTEINS: From Quantum Chemistry to Drug Design. Annual Review of Physical Chemistry, 53(1), 349-378. doi:10.1146/annurev.physchem.53.082201.124235 es_ES
dc.description.references Widmalm, G. (2007). General NMR Spectroscopy of Carbohydrates and Conformational Analysis in Solution. Comprehensive Glycoscience, 101-132. doi:10.1016/b978-044451967-2/00025-8 es_ES
dc.description.references Baldock, J. A., Oades, J. M., Vassallo, A. M., & Wilson, M. A. (1990). Significance of microbial activity in soils as demonstrated by solid-state carbon-13 NMR. Environmental Science & Technology, 24(4), 527-530. doi:10.1021/es00074a010 es_ES
dc.description.references Knicker, H. (2000). Biogenic Nitrogen in Soils as Revealed by Solid-State Carbon-13 and Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy. Journal of Environment Quality, 29(3), 715. doi:10.2134/jeq2000.00472425002900030005x es_ES
dc.description.references Kögel-Knabner, I. (1997). 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma, 80(3-4), 243-270. doi:10.1016/s0016-7061(97)00055-4 es_ES
dc.description.references Duarte, R. M. B. O., Silva, A. M. S., & Duarte, A. C. (2008). Two-Dimensional NMR Studies of Water-Soluble Organic Matter in Atmospheric Aerosols. Environmental Science & Technology, 42(22), 8224-8230. doi:10.1021/es801298s es_ES
dc.description.references Henderson, R. K., Baker, A., Parsons, S. A., & Jefferson, B. (2008). Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research, 42(13), 3435-3445. doi:10.1016/j.watres.2007.10.032 es_ES
dc.description.references Prats, D., Rodrguez, M., Varo, P., Moreno, A., Ferrer, J., & Berna, J. L. (1999). Biodegradation of soap in anaerobic digesters and on sludge amended soils. Water Research, 33(1), 105-108. doi:10.1016/s0043-1354(98)00199-7 es_ES
dc.description.references Grimalt, J. O., Fernandez, P., Bayona, J. M., & Albaiges, J. (1990). Assessment of fecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Environmental Science & Technology, 24(3), 357-363. doi:10.1021/es00073a011 es_ES
dc.description.references Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000:  A National Reconnaissance. Environmental Science & Technology, 36(6), 1202-1211. doi:10.1021/es011055j es_ES
dc.description.references ROBERTS, P., & THOMAS, K. (2006). The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of The Total Environment, 356(1-3), 143-153. doi:10.1016/j.scitotenv.2005.04.031 es_ES
dc.description.references Santos, J. L., Aparicio, I., Callejón, M., & Alonso, E. (2009). Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). Journal of Hazardous Materials, 164(2-3), 1509-1516. doi:10.1016/j.jhazmat.2008.09.073 es_ES
dc.description.references Bond, T., Henriet, O., Goslan, E. H., Parsons, S. A., & Jefferson, B. (2009). Disinfection Byproduct Formation and Fractionation Behavior of Natural Organic Matter Surrogates. Environmental Science & Technology, 43(15), 5982-5989. doi:10.1021/es900686p es_ES
dc.description.references Katsoyiannis, A., & Samara, C. (2006). The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Environmental Science and Pollution Research - International, 14(5), 284-292. doi:10.1065/espr2006.05.302 es_ES
dc.description.references Yang, X., Shang, C., Lee, W., Westerhoff, P., & Fan, C. (2008). Correlations between organic matter properties and DBP formation during chloramination. Water Research, 42(8-9), 2329-2339. doi:10.1016/j.watres.2007.12.021 es_ES
dc.description.references Pernet-coudrier, B., Clouzot, L., Varrault, G., Tusseau-vuillemin, M.-H., Verger, A., & Mouchel, J.-M. (2008). Dissolved organic matter from treated effluent of a major wastewater treatment plant: Characterization and influence on copper toxicity. Chemosphere, 73(4), 593-599. doi:10.1016/j.chemosphere.2008.05.064 es_ES
dc.description.references Gyurcsik, B., & Nagy, L. (2000). Carbohydrates as ligands: coordination equilibria and structure of the metal complexes. Coordination Chemistry Reviews, 203(1), 81-149. doi:10.1016/s0010-8545(99)00183-6 es_ES
dc.description.references Kabra, K., Chaudhary, R., & Sawhney, R. L. (2008). Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal–citric acid complexes. Journal of Hazardous Materials, 155(3), 424-432. doi:10.1016/j.jhazmat.2007.11.083 es_ES
dc.description.references Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P. F., Ingerslev, F., Holten Lützhøft, H. C., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment- A review. Chemosphere, 36(2), 357-393. doi:10.1016/s0045-6535(97)00354-8 es_ES
dc.description.references Ikehata, K., Jodeiri Naghashkar, N., & Gamal El-Din, M. (2006). Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. Ozone: Science & Engineering, 28(6), 353-414. doi:10.1080/01919510600985937 es_ES
dc.description.references Zwiener, C. (2000). Oxidative treatment of pharmaceuticals in water. Water Research, 34(6), 1881-1885. doi:10.1016/s0043-1354(99)00338-3 es_ES
dc.description.references Oliver, B. G., & Shindler, D. B. (1980). Trihalomethanes from the chlorination of aquatic algae. Environmental Science & Technology, 14(12), 1502-1505. doi:10.1021/es60172a004 es_ES
dc.description.references Navalon, S., Alvaro, M., & Garcia, H. (2008). Carbohydrates as trihalomethanes precursors. Influence of pH and the presence of Cl− and Br− on trihalomethane formation potential. Water Research, 42(14), 3990-4000. doi:10.1016/j.watres.2008.07.011 es_ES
dc.description.references Navalon, S., Alvaro, M., & Garcia, H. (2009). Ca2+ and Mg2+ present in hard waters enhance trihalomethane formation. Journal of Hazardous Materials, 169(1-3), 901-906. doi:10.1016/j.jhazmat.2009.04.031 es_ES
dc.description.references Scully, F. E., Howell, G. D., Kravitz, R., Jewell, J. T., Hahn, V., & Speed, M. (1988). Proteins in natural waters and their relation to the formation of chlorinated organics during water disinfection. Environmental Science & Technology, 22(5), 537-542. doi:10.1021/es00170a009 es_ES
dc.description.references Hureiki, L., Croué, J. P., & Legube, B. (1994). Chlorination studies of free and combined amino acids. Water Research, 28(12), 2521-2531. doi:10.1016/0043-1354(94)90070-1 es_ES
dc.description.references Larson, R. A., & Rockwell, A. L. (1979). Chloroform and chlorophenol production by decarboxylation of natural acids during aqueous chlorination. Environmental Science & Technology, 13(3), 325-329. doi:10.1021/es60151a014 es_ES
dc.description.references Dickenson, E. R. V., Summers, R. S., Croué, J.-P., & Gallard, H. (2008). Haloacetic acid and Trihalomethane Formation from the Chlorination and Bromination of Aliphatic β-Dicarbonyl Acid Model Compounds. Environmental Science & Technology, 42(9), 3226-3233. doi:10.1021/es0711866 es_ES
dc.description.references Jardé, E., Mansuy, L., & Faure, P. (2005). Organic markers in the lipidic fraction of sewage sludges. Water Research, 39(7), 1215-1232. doi:10.1016/j.watres.2004.12.024 es_ES
dc.description.references Ali, M., & Sreekrishnan, T. . (2001). Aquatic toxicity from pulp and paper mill effluents: a review. Advances in Environmental Research, 5(2), 175-196. doi:10.1016/s1093-0191(00)00055-1 es_ES
dc.description.references Ledakowicz, S., Michniewicz, M., Jagiella, A., Stufka-Olczyk, J., & Martynelis, M. (2006). Elimination of resin acids by advanced oxidation processes and their impact on subsequent biodegradation. Water Research, 40(18), 3439-3446. doi:10.1016/j.watres.2006.06.038 es_ES
dc.description.references Norwood, D. L., Johnson, J. D., Christman, R. F., Hass, J. R., & Bobenrieth, M. J. (1980). Reactions of chlorine with selected aromatic models of aquatic humic material. Environmental Science & Technology, 14(2), 187-190. doi:10.1021/es60162a012 es_ES
dc.description.references Beccari, M., Bonemazzi, F., Majone, M., & Riccardi, C. (1996). Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Research, 30(1), 183-189. doi:10.1016/0043-1354(95)00086-z es_ES
dc.description.references Mulinacci, N., Romani, A., Galardi, C., Pinelli, P., Giaccherini, C., & Vincieri, F. F. (2001). Polyphenolic Content in Olive Oil Waste Waters and Related Olive Samples. Journal of Agricultural and Food Chemistry, 49(8), 3509-3514. doi:10.1021/jf000972q es_ES
dc.description.references Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131(1-2), 5-17. doi:10.1016/s0378-4274(02)00041-3 es_ES
dc.description.references Ozonation and wet oxidation in the treatment of thermomechanical pulp (TMP) circulation waters. (1999). Water Science and Technology, 40(11-12). doi:10.1016/s0273-1223(99)00700-3 es_ES
dc.description.references Peng, G., & Roberts, J. C. (2000). Solubility and toxicity of resin acids. Water Research, 34(10), 2779-2785. doi:10.1016/s0043-1354(99)00406-6 es_ES
dc.description.references Sierra‐Alvarez, R., Kato, M., & Lettinga, G. (1990). The anaerobic biodegradability of paper mill wastewater constituents. Environmental Technology, 11(10), 891-898. doi:10.1080/09593339009384941 es_ES
dc.description.references Korhonen, S., & Tuhkanen, T. (2000). Effects of Ozone on Resin Acids in Thermomechanical Pulp and Paper Mill Circulation Waters. Ozone: Science & Engineering, 22(6), 575-584. doi:10.1080/01919510009408800 es_ES
dc.description.references Limitations for biological removal of resin acids from pulp mill effluent. (1999). Water Science and Technology, 40(11-12). doi:10.1016/s0273-1223(99)00729-5 es_ES
dc.description.references Caravelli, A., Contreras, E. M., Giannuzzi, L., & Zaritzky, N. (2003). Modeling of chlorine effect on floc forming and filamentous micro-organisms of activated sludges. Water Research, 37(9), 2097-2105. doi:10.1016/s0043-1354(02)00601-2 es_ES
dc.description.references Trehy, M.L. and Bieber, T.I.Proceedings of the ACS Division of Environmental Chemistry. San Francisco, CA. pp.443–446. Washington, DC: American Chemical Society. es_ES
dc.description.references Boyce, S. D., & Hornig, J. F. (1983). Reaction pathways of trihalomethane formation from the halogenation of dihydroxyaromatic model compounds for humic acid. Environmental Science & Technology, 17(4), 202-211. doi:10.1021/es00110a005 es_ES
dc.description.references Reckhow, D. A., Singer, P. C., & Malcolm, R. L. (1990). Chlorination of humic materials: byproduct formation and chemical interpretations. Environmental Science & Technology, 24(11), 1655-1664. doi:10.1021/es00081a005 es_ES


This item appears in the following Collection(s)

Show simple item record