- -

Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln

Mostrar el registro completo del ítem

Giménez Morales, C.; Climent Terol, E.; Aznar Gimeno, E.; Martínez Mañez, R.; Sancenón Galarza, F.; Marcos Martínez, MD.; Amoros Del Toro, PJ.... (2014). Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln. Angewandte Chemie. 126:12838-12843. https://doi.org/10.1002/ange.201405580

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59967

Ficheros en el ítem

Metadatos del ítem

Título: Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln
Autor: Giménez Morales, Cristina Climent Terol, Estela Aznar Gimeno, Elena Martínez Mañez, Ramón Sancenón Galarza, Félix Marcos Martínez, María Dolores Amoros del Toro, Pedro Jose Rurack, Knut
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Fecha difusión:
Resumen:
Das Design von vergleichsweise einfachen und modular konfigurierbaren k nstlichen Systemen, die ber den Austausch von chemischen Botenstoffen miteinander kommunizieren kçnnen, ist unseres Wissens ein bislang ...[+]
Derechos de uso: Cerrado
Fuente:
Angewandte Chemie. (issn: 1521-3757 )
DOI: 10.1002/ange.201405580
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/ange.201405580
Tipo: Artículo

References

Steiger, S., Schmitt, T., & Schaefer, H. M. (2010). The origin and dynamic evolution of chemical information transfer. Proceedings of the Royal Society B: Biological Sciences, 278(1708), 970-979. doi:10.1098/rspb.2010.2285

Waters, C. M., & Bassler, B. L. (2005). QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319-346. doi:10.1146/annurev.cellbio.21.012704.131001

Van Donk, E. (2007). Chemical information transfer in freshwater plankton. Ecological Informatics, 2(2), 112-120. doi:10.1016/j.ecoinf.2007.03.002 [+]
Steiger, S., Schmitt, T., & Schaefer, H. M. (2010). The origin and dynamic evolution of chemical information transfer. Proceedings of the Royal Society B: Biological Sciences, 278(1708), 970-979. doi:10.1098/rspb.2010.2285

Waters, C. M., & Bassler, B. L. (2005). QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319-346. doi:10.1146/annurev.cellbio.21.012704.131001

Van Donk, E. (2007). Chemical information transfer in freshwater plankton. Ecological Informatics, 2(2), 112-120. doi:10.1016/j.ecoinf.2007.03.002

Robinson, G. E., & Huang, Z.-Y. (1998). Colony integration in honey bees: genetic, endocrine and social control of division of labor. Apidologie, 29(1-2), 159-170. doi:10.1051/apido:19980109

Sbarbati, A., & Osculati, F. (2006). Allelochemical Communication in Vertebrates: Kairomones, Allomones and Synomones. Cells Tissues Organs, 183(4), 206-219. doi:10.1159/000096511

Wayne, R. (1994). The excitability of plant cells: With a special emphasis on characean internodal cells. The Botanical Review, 60(3), 265-367. doi:10.1007/bf02960261

Pacheco, A. R., & Sperandio, V. (2009). Inter-kingdom signaling: chemical language between bacteria and host. Current Opinion in Microbiology, 12(2), 192-198. doi:10.1016/j.mib.2009.01.006

Badri, D. V., Weir, T. L., van der Lelie, D., & Vivanco, J. M. (2009). Rhizosphere chemical dialogues: plant–microbe interactions. Current Opinion in Biotechnology, 20(6), 642-650. doi:10.1016/j.copbio.2009.09.014

Janata, J. (2009). Principles of Chemical Sensors. doi:10.1007/b136378

Rieth, S., Hermann, K., Wang, B.-Y., & Badjić, J. D. (2011). Controlling the dynamics of molecular encapsulation and gating. Chem. Soc. Rev., 40(3), 1609-1622. doi:10.1039/c005254j

Kreft, O., Prevot, M., Möhwald, H., & Sukhorukov, G. B. (2007). Shell-in-Shell Microcapsules: A Novel Tool for Integrated, Spatially Confined Enzymatic Reactions. Angewandte Chemie International Edition, 46(29), 5605-5608. doi:10.1002/anie.200701173

Kreft, O., Prevot, M., Möhwald, H., & Sukhorukov, G. B. (2007). Effiziente Kopplung räumlich getrennter Enzymreaktionen in «Shell-in-shell»-Mikrokapseln. Angewandte Chemie, 119(29), 5702-5705. doi:10.1002/ange.200701173

Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469

Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d

Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g

Ludlow, R. F., & Otto, S. (2008). Systems chemistry. Chem. Soc. Rev., 37(1), 101-108. doi:10.1039/b611921m

Taylor, A. F., Tinsley, M. R., Wang, F., Huang, Z., & Showalter, K. (2009). Dynamical Quorum Sensing and Synchronization in Large Populations of Chemical Oscillators. Science, 323(5914), 614-617. doi:10.1126/science.1166253

Dickschat, J. S. (2010). Quorum sensing and bacterial biofilms. Natural Product Reports, 27(3), 343. doi:10.1039/b804469b

Kerényi, Á., Bihary, D., Venturi, V., & Pongor, S. (2013). Stability of Multispecies Bacterial Communities: Signaling Networks May Stabilize Microbiomes. PLoS ONE, 8(3), e57947. doi:10.1371/journal.pone.0057947

Betke, K. M., Wells, C. A., & Hamm, H. E. (2012). GPCR mediated regulation of synaptic transmission. Progress in Neurobiology, 96(3), 304-321. doi:10.1016/j.pneurobio.2012.01.009

Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980

Cotí, K. K., Belowich, M. E., Liong, M., Ambrogio, M. W., Lau, Y. A., Khatib, H. A., … Stoddart, J. F. (2009). Mechanised nanoparticles for drug delivery. Nanoscale, 1(1), 16. doi:10.1039/b9nr00162j

Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(22), 5460-5465. doi:10.1002/anie.201107960

Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(22), 5556-5561. doi:10.1002/ange.201107960

Liu, R., Zhao, X., Wu, T., & Feng, P. (2008). Tunable Redox-Responsive Hybrid Nanogated Ensembles. Journal of the American Chemical Society, 130(44), 14418-14419. doi:10.1021/ja8060886

Zhu, C.-L., Lu, C.-H., Song, X.-Y., Yang, H.-H., & Wang, X.-R. (2011). Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate. Journal of the American Chemical Society, 133(5), 1278-1281. doi:10.1021/ja110094g

Schlossbauer, A., Dohmen, C., Schaffert, D., Wagner, E., & Bein, T. (2011). pH-Responsive Release of Acetal-Linked Melittin from SBA-15 Mesoporous Silica. Angewandte Chemie International Edition, 50(30), 6828-6830. doi:10.1002/anie.201005120

Schlossbauer, A., Dohmen, C., Schaffert, D., Wagner, E., & Bein, T. (2011). pH-Responsive Release of Acetal-Linked Melittin from SBA-15 Mesoporous Silica. Angewandte Chemie, 123(30), 6960-6962. doi:10.1002/ange.201005120

Wu, S., Huang, X., & Du, X. (2013). Glucose- and pH-Responsive Controlled Release of Cargo from Protein-Gated Carbohydrate-Functionalized Mesoporous Silica Nanocontainers. Angewandte Chemie International Edition, 52(21), 5580-5584. doi:10.1002/anie.201300958

Wu, S., Huang, X., & Du, X. (2013). Glucose- and pH-Responsive Controlled Release of Cargo from Protein-Gated Carbohydrate-Functionalized Mesoporous Silica Nanocontainers. Angewandte Chemie, 125(21), 5690-5694. doi:10.1002/ange.201300958

Zhang, Z., Balogh, D., Wang, F., & Willner, I. (2013). Smart Mesoporous SiO2 Nanoparticles for the DNAzyme-Induced Multiplexed Release of Substrates. Journal of the American Chemical Society, 135(5), 1934-1940. doi:10.1021/ja311385y

Yang, X., Pu, F., Chen, C., Ren, J., & Qu, X. (2012). An enzyme-responsive nanocontainer as an intelligent signal-amplification platform for a multiple proteases assay. Chemical Communications, 48(90), 11133. doi:10.1039/c2cc36340b

Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818

Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818

Park, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085

Thornton, P. D., & Heise, A. (2010). Highly Specific Dual Enzyme-Mediated Payload Release from Peptide-Coated Silica Particles. Journal of the American Chemical Society, 132(6), 2024-2028. doi:10.1021/ja9094439

Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133

Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie, 123(9), 2186-2188. doi:10.1002/ange.201004133

Climent, E., Gröninger, D., Hecht, M., Walter, M. A., Martínez-Máñez, R., Weller, M. G., … Rurack, K. (2013). Selective, Sensitive, and Rapid Analysis with Lateral-Flow Assays Based on Antibody-Gated Dye-Delivery Systems: The Example of Triacetone Triperoxide. Chemistry - A European Journal, 19(13), 4117-4122. doi:10.1002/chem.201300031

Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k

Hecht, M., Climent, E., Biyikal, M., Sancenón, F., Martínez-Máñez, R., & Rurack, K. (2013). Gated hybrid delivery systems: En route to sensory materials with inherent signal amplification. Coordination Chemistry Reviews, 257(17-18), 2589-2606. doi:10.1016/j.ccr.2013.03.020

Scrimin, P., & Prins, L. J. (2011). Sensing through signal amplification. Chemical Society Reviews, 40(9), 4488. doi:10.1039/c1cs15024c

Martínez-Máñez, R., Sancenón, F., Biyikal, M., Hecht, M., & Rurack, K. (2011). Mimicking tricks from nature with sensory organic–inorganic hybrid materials. Journal of Materials Chemistry, 21(34), 12588. doi:10.1039/c1jm11210d

Darensbourg, M. Y., & Bethel, R. D. (2011). Merging the old with the new. Nature Chemistry, 4(1), 11-13. doi:10.1038/nchem.1228

Breslow, R. (2008). Biomimetic Chemistry: Biology as an Inspiration. Journal of Biological Chemistry, 284(3), 1337-1342. doi:10.1074/jbc.x800011200

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem