Scott, G., & Smith, K. V. (1978). Mechanisms of antioxidant action: Auto-synergistic behaviour of nitrones. European Polymer Journal, 14(1), 39-43. doi:10.1016/0014-3057(78)90149-0
Lee, K. J., & Kim, D. H. (1998). Inhibition of thermolysin with nitrone-bearing substrate analogs: A new type of thermolysin inhibitors. Bioorganic & Medicinal Chemistry Letters, 8(4), 323-326. doi:10.1016/s0960-894x(98)00023-7
Gothelf, K. V., & Jørgensen, K. A. (1998). Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chemical Reviews, 98(2), 863-910. doi:10.1021/cr970324e
[+]
Scott, G., & Smith, K. V. (1978). Mechanisms of antioxidant action: Auto-synergistic behaviour of nitrones. European Polymer Journal, 14(1), 39-43. doi:10.1016/0014-3057(78)90149-0
Lee, K. J., & Kim, D. H. (1998). Inhibition of thermolysin with nitrone-bearing substrate analogs: A new type of thermolysin inhibitors. Bioorganic & Medicinal Chemistry Letters, 8(4), 323-326. doi:10.1016/s0960-894x(98)00023-7
Gothelf, K. V., & Jørgensen, K. A. (1998). Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chemical Reviews, 98(2), 863-910. doi:10.1021/cr970324e
Marco-Contelles, J. (2004). β-Lactam Synthesis by the Kinugasa Reaction. Angewandte Chemie International Edition, 43(17), 2198-2200. doi:10.1002/anie.200301730
Marco-Contelles, J. (2004). β-Lactam-Synthese durch die Kinugasa-Reaktion. Angewandte Chemie, 116(17), 2248-2250. doi:10.1002/ange.200301730
Masson, G., Cividino, P., Py, S., & Vallée, Y. (2003). SmI2-Induced Umpolung of the CN Bond: First Reductive Conjugate Addition of Nitrones to α,β-Unsaturated Esters. Angewandte Chemie International Edition, 42(20), 2265-2268. doi:10.1002/anie.200250480
Masson, G., Cividino, P., Py, S., & Vallée, Y. (2003). Angewandte Chemie, 115(20), 2367-2370. doi:10.1002/ange.200250480
Evans, D. A., Song, H.-J., & Fandrick, K. R. (2006). Enantioselective Nitrone Cycloadditions of α,β-Unsaturated 2-Acyl Imidazoles Catalyzed by Bis(oxazolinyl)pyridine−Cerium(IV) Triflate Complexes. Organic Letters, 8(15), 3351-3354. doi:10.1021/ol061223i
Carmona, D., Lamata, M. P., Viguri, F., Rodríguez, R., Oro, L. A., Lahoz, F. J., … Merino, P. (2005). Enantioselective 1,3-Dipolar Cycloaddition of Nitrones to Methacrolein Catalyzed by (η5-C5Me5)M{(R)-Prophos} Containing Complexes (M = Rh, Ir; (R)-Prophos = 1,2-bis(Diphenylphosphino)propane): On the Origin of the Enantioselectivity. Journal of the American Chemical Society, 127(38), 13386-13398. doi:10.1021/ja0539443
Gawade, S. A., Bhunia, S., & Liu, R.-S. (2012). Intermolecular Gold-Catalyzed Diastereo- and Enantioselective [2+2+3] Cycloadditions of 1,6-Enynes with Nitrones. Angewandte Chemie International Edition, 51(31), 7835-7838. doi:10.1002/anie.201203507
Gawade, S. A., Bhunia, S., & Liu, R.-S. (2012). Intermolecular Gold-Catalyzed Diastereo- and Enantioselective [2+2+3] Cycloadditions of 1,6-Enynes with Nitrones. Angewandte Chemie, 124(31), 7955-7958. doi:10.1002/ange.201203507
Young, I. S., & Kerr, M. A. (2003). A Homo [3+2] Dipolar Cycloaddition: The Reaction of Nitrones with Cyclopropanes. Angewandte Chemie International Edition, 42(26), 3023-3026. doi:10.1002/anie.200351573
Young, I. S., & Kerr, M. A. (2003). Angewandte Chemie, 115(26), 3131-3134. doi:10.1002/ange.200351573
Qian, Y., Xu, X., Wang, X., Zavalij, P. J., Hu, W., & Doyle, M. P. (2012). Rhodium(II)- and Copper(II)-Catalyzed Reactions of Enol Diazoacetates with Nitrones: Metal Carbene versus Lewis Acid Directed Pathways. Angewandte Chemie International Edition, 51(24), 5900-5903. doi:10.1002/anie.201202525
Qian, Y., Xu, X., Wang, X., Zavalij, P. J., Hu, W., & Doyle, M. P. (2012). Rhodium(II)- and Copper(II)-Catalyzed Reactions of Enol Diazoacetates with Nitrones: Metal Carbene versus Lewis Acid Directed Pathways. Angewandte Chemie, 124(24), 6002-6005. doi:10.1002/ange.201202525
Cardona, F., & Goti, A. (2005). The Discovery of Novel Metal-Induced Reactions of Nitrones: Not Only Electrophiles and Reagents for [3+2] Cycloadditions. Angewandte Chemie International Edition, 44(48), 7832-7835. doi:10.1002/anie.200502640
Cardona, F., & Goti, A. (2005). Die Entdeckung neuer metallinduzierter Reaktionen von Nitronen: mehr als nur Elektrophile und Reagentien für [3+2]-Cycloadditionen. Angewandte Chemie, 117(48), 8042-8045. doi:10.1002/ange.200502640
Liu, F., Qian, D., Li, L., Zhao, X., & Zhang, J. (2010). Diastereo- and Enantioselective Gold(I)-Catalyzed Intermolecular Tandem Cyclization/[3+3]Cycloadditions of 2-(1-Alkynyl)-2-alken-1-ones with Nitrones. Angewandte Chemie International Edition, 49(37), 6669-6672. doi:10.1002/anie.201003136
Liu, F., Qian, D., Li, L., Zhao, X., & Zhang, J. (2010). Diastereo- and Enantioselective Gold(I)-Catalyzed Intermolecular Tandem Cyclization/[3+3]Cycloadditions of 2-(1-Alkynyl)-2-alken-1-ones with Nitrones. Angewandte Chemie, 122(37), 6819-6822. doi:10.1002/ange.201003136
Hamer, J., & Macaluso, A. (1964). Nitrones. Chemical Reviews, 64(4), 473-495. doi:10.1021/cr60230a006
Murray, R. W., & Singh, M. (1990). Chemistry of dioxiranes. 16. A facile one step synthesis of C-aryl nitrones using dimethyldioxirane. The Journal of Organic Chemistry, 55(9), 2954-2957. doi:10.1021/jo00296a073
Murahashi, S., Mitsui, H., Shiota, T., Tsuda, T., & Watanabe, S. (1990). Tungstate-catalyzed oxidation of secondary amines to nitrones. .alpha.-Substitution of secondary amines via nitrones. The Journal of Organic Chemistry, 55(6), 1736-1744. doi:10.1021/jo00293a013
Cicchi, S., Goti, A., & Brandi, A. (1995). A Five-Membered Enantiopure Cyclic Nitrone from Malic Acid by Regioselective Oxidation of Cyclic Hydroxylamine. Synthesis of (1S,7S,8aR)-Octahydro-1,7-dihydroxyindolizine. The Journal of Organic Chemistry, 60(15), 4743-4748. doi:10.1021/jo00120a016
Christensen, D., & Joergensen, K. A. (1989). Oxidation of imines to nitrones by the permanganate ion. The Journal of Organic Chemistry, 54(1), 126-131. doi:10.1021/jo00262a029
Dondoni, A., Franco, S., Junquera, F., Merchán, F. L., Merino, P., & Tejero, T. (1994). Synthesis of N-Benzyl Nitrones. Synthetic Communications, 24(18), 2537-2550. doi:10.1080/00397919408010565
Buehler, E. (1967). Alkylation of syn- and anti-benzaldoximes. The Journal of Organic Chemistry, 32(2), 261-265. doi:10.1021/jo01288a002
Blaser, H.-U., Steiner, H., & Studer, M. (2009). Selective Catalytic Hydrogenation of Functionalized Nitroarenes: An Update. ChemCatChem, 1(2), 210-221. doi:10.1002/cctc.200900129
Corma, A., Serna, P., & García, H. (2007). Gold Catalysts Open a New General Chemoselective Route to Synthesize Oximes by Hydrogenation of α,β-Unsaturated Nitrocompounds with H2. Journal of the American Chemical Society, 129(20), 6358-6359. doi:10.1021/ja0704131
Rubio-Marqués, P., Hernández-Garrido, J. C., Leyva-Pérez, A., & Corma, A. (2014). One pot synthesis of cyclohexanone oxime from nitrobenzene using a bifunctional catalyst. Chem. Commun., 50(14), 1645-1647. doi:10.1039/c3cc47693f
Gautheron-Chapoulaud, V., Pandya, S. U., Cividino, P., Masson, G., Py, S., & Vallée, Y. (2001). One-Pot Synthesis of Functionalized Nitrones from Nitro Compounds. Synlett, 2001(08), 1281-1283. doi:10.1055/s-2001-16042
Nigra, M. M., Arslan, I., & Katz, A. (2012). Gold nanoparticle-catalyzed reduction in a model system: Quantitative determination of reactive heterogeneity of a supported nanoparticle surface. Journal of Catalysis, 295, 115-121. doi:10.1016/j.jcat.2012.08.001
Corma, A., Serna, P., Concepción, P., & Calvino, J. J. (2008). Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics. Journal of the American Chemical Society, 130(27), 8748-8753. doi:10.1021/ja800959g
Corma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383
Serna, P., Boronat, M., & Corma, A. (2011). Tuning the Behavior of Au and Pt Catalysts for the Chemoselective Hydrogenation of Nitroaromatic Compounds. Topics in Catalysis, 54(5-7), 439-446. doi:10.1007/s11244-011-9668-z
Santos, L. L., Serna, P., & Corma, A. (2009). Chemoselective Synthesis of Substituted Imines, Secondary Amines, and β-Amino Carbonyl Compounds from Nitroaromatics through Cascade Reactions on Gold Catalysts. Chemistry - A European Journal, 15(33), 8196-8203. doi:10.1002/chem.200900884
Serna, P., Concepción, P., & Corma, A. (2009). Design of highly active and chemoselective bimetallic gold–platinum hydrogenation catalysts through kinetic and isotopic studies. Journal of Catalysis, 265(1), 19-25. doi:10.1016/j.jcat.2009.04.004
Tauster, S. J., Fung, S. C., & Garten, R. L. (1978). Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. Journal of the American Chemical Society, 100(1), 170-175. doi:10.1021/ja00469a029
Corma, A., Concepción, P., & Serna, P. (2007). A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie International Edition, 46(38), 7266-7269. doi:10.1002/anie.200700823
Corma, A., Concepción, P., & Serna, P. (2007). A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie, 119(38), 7404-7407. doi:10.1002/ange.200700823
Boronat, M., Concepción, P., Corma, A., González, S., Illas, F., & Serna, P. (2007). A Molecular Mechanism for the Chemoselective Hydrogenation of Substituted Nitroaromatics with Nanoparticles of Gold on TiO2Catalysts: A Cooperative Effect between Gold and the Support. Journal of the American Chemical Society, 129(51), 16230-16237. doi:10.1021/ja076721g
Sarkany, J., & D. Gonzalez, R. (1983). Support and dispersion effects on silica- and alumina-supported platinum catalysts. Applied Catalysis, 5(1), 85-97. doi:10.1016/0166-9834(83)80297-8
Jin, T., Zhou, Y., Mains, G. J., & White, J. M. (1987). Infrared and x-ray photoelectron spectroscopy study of carbon monoxide and carbon dioxide on platinum/ceria. The Journal of Physical Chemistry, 91(23), 5931-5937. doi:10.1021/j100307a023
Boccuzzi, F., Chiorino, A., & Guglielminotti, E. (1996). Effects of structural defects and alloying on the FTIR spectra of CO adsorbed on. Surface Science, 368(1-3), 264-269. doi:10.1016/s0039-6028(96)01060-6
[-]