- -

Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blandez Barradas, Juan Francisco es_ES
dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author Asiri, Abdullah es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-01-18T09:56:26Z
dc.date.issued 2014-11-10
dc.identifier.issn 1433-7851
dc.identifier.uri http://hdl.handle.net/10251/59972
dc.description.abstract [EN] Copper nanoparticles (NPs) supported on a series of undoped and doped graphene materials (Gs) have been obtained by pyrolysis of alginate or chitosan biopolymers, modified or not with boric acid, containing Cu2+ ions at 900 8C under inert atmosphere. The resulting Cu-G materials containing about 17 wt% Cu NPs (from 10 to 200 nm) exhibit high catalytic activity for the dehydrogenative coupling of silanes with alcohols. The optimal material consisting on Cu- (B)G is more efficient than Cu NPs on other carbon supports es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of economy and competitiveness (Severo Ochoa and CTQ2012-32315) and Generalitat Valenciana Prometeo 2012-013) is gratefully acknowledged.
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Angewandte Chemie International Edition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alcoxysilanes es_ES
dc.subject Dehydrogenative coupling es_ES
dc.subject Graphene es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Metal nanoparticles es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/anie.201405669
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F013/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Blandez Barradas, JF.; Primo Arnau, AM.; Asiri, A.; Alvaro Rodríguez, MM.; García Gómez, H. (2014). Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols. Angewandte Chemie International Edition. 53(46):12581-12586. https://doi.org/10.1002/anie.201405669 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/anie.201405669 es_ES
dc.description.upvformatpinicio 12581 es_ES
dc.description.upvformatpfin 12586 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 46 es_ES
dc.relation.senia 278553 es_ES
dc.identifier.eissn 1521-3773
dc.identifier.pmid 25196304
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.description.references Belelli, P. ., Ferreira, M. ., & Damiani, D. . (2000). A theoretical and experimental study of the possible phenytriethoxysilane species found on treated silica. Journal of Molecular Catalysis A: Chemical, 159(2), 315-325. doi:10.1016/s1381-1169(00)00186-2 es_ES
dc.description.references Díaz, I., & Pérez-Pariente, J. (2002). Synthesis of Spongelike Functionalized MCM-41 Materials from Gels Containing Amino Acids. Chemistry of Materials, 14(11), 4641-4646. doi:10.1021/cm020128a es_ES
dc.description.references Matheron, M., Gacoin, T., Boilot, J.-P., Bourgeois, A., Brunet-Bruneau, A., Rivory, J., … Biteau, J. (2005). Ordered mesoporous organosilica films. Studies in Surface Science and Catalysis, 327-334. doi:10.1016/s0167-2991(05)80225-3 es_ES
dc.description.references Gómez-Avilés, A., Aranda, P., Fernandes, F. M., Belver, C., & Ruiz-Hitzky, E. (2013). Silica-Sepiolite Nanoarchitectures. Journal of Nanoscience and Nanotechnology, 13(4), 2897-2907. doi:10.1166/jnn.2013.7429 es_ES
dc.description.references Negrete, Letoffe, J.-M., Putaux, J.-L., David, L., & Bourgeat-Lami, E. (2004). Aqueous Dispersions of Silane-Functionalized Laponite Clay Platelets. A First Step toward the Elaboration of Water-Based Polymer/Clay Nanocomposites. Langmuir, 20(5), 1564-1571. doi:10.1021/la0349267 es_ES
dc.description.references Jaber, M., Gaslain, F. O. M., & Miehé-Brendlé, J. (2009). Rapid and Direct Synthesis of Spherical Organotalc. Clays and Clay Minerals, 57(1), 35-39. doi:10.1346/ccmn.2009.0570103 es_ES
dc.description.references Stratakis, M., & Garcia, H. (2012). Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 112(8), 4469-4506. doi:10.1021/cr3000785 es_ES
dc.description.references Mitsudome, T., Yamamoto, Y., Noujima, A., Mizugaki, T., Jitsukawa, K., & Kaneda, K. (2013). Highly Efficient Etherification of Silanes by Using a Gold Nanoparticle Catalyst: Remarkable Effect of O2. Chemistry - A European Journal, 19(43), 14398-14402. doi:10.1002/chem.201302807 es_ES
dc.description.references Taguchi, T., Isozaki, K., & Miki, K. (2012). Enhanced Catalytic Activity of Self-Assembled-Monolayer-Capped Gold Nanoparticles. Advanced Materials, 24(48), 6462-6467. doi:10.1002/adma.201202979 es_ES
dc.description.references Rendler, S., Plefka, O., Karatas, B., Auer, G., Fröhlich, R., Mück-Lichtenfeld, C., … Oestreich, M. (2008). Stereoselective Alcohol Silylation by Dehydrogenative Si-O Coupling: Scope, Limitations, and Mechanism of the Cu-H-Catalyzed Non-Enzymatic Kinetic Resolution with Silicon-Stereogenic Silanes. Chemistry - A European Journal, 14(36), 11512-11528. doi:10.1002/chem.200801377 es_ES
dc.description.references Kira, K., Tanda, H., Hamajima, A., Baba, T., Takai, S., & Isobe, M. (2002). Mechanistic studies on the hydrosilylation of an acetylene cobalt complex; trapping an active catalyst Co2(CO)6 causing olefin-isomerization and O-silylation. Tetrahedron, 58(32), 6485-6492. doi:10.1016/s0040-4020(02)00659-2 es_ES
dc.description.references Park, J.-W., & Jun, C.-H. (2007). Highly Efficient O-Silylation of Alcohol with Vinylsilane Using a Rh(I)/HCl Catalyst at Room Temperature. Organic Letters, 9(20), 4073-4076. doi:10.1021/ol701909e es_ES
dc.description.references Hilal, H. S., Rabah, A., Khatib, I. S., & Schreiner, A. F. (1990). A new silica-supported platinum-amine catalyst for the reaction of silanes with alcohols. Journal of Molecular Catalysis, 61(1), 1-17. doi:10.1016/0304-5102(90)85188-n es_ES
dc.description.references Ito, H., Takagi, K., Miyahara, T., & Sawamura, M. (2005). Gold(I)−Phosphine Catalyst for the Highly Chemoselective Dehydrogenative Silylation of Alcohols. Organic Letters, 7(14), 3001-3004. doi:10.1021/ol050979z es_ES
dc.description.references Zazo, J. A., Casas, J. A., Mohedano, A. F., & Rodríguez, J. J. (2006). Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Applied Catalysis B: Environmental, 65(3-4), 261-268. doi:10.1016/j.apcatb.2006.02.008 es_ES
dc.description.references Ikeda, S., Ishino, S., Harada, T., Okamoto, N., Sakata, T., Mori, H., … Matsumura, M. (2006). Ligand-Free Platinum Nanoparticles Encapsulated in a Hollow Porous Carbon Shell as a Highly Active Heterogeneous Hydrogenation Catalyst. Angewandte Chemie International Edition, 45(42), 7063-7066. doi:10.1002/anie.200602700 es_ES
dc.description.references Ikeda, S., Ishino, S., Harada, T., Okamoto, N., Sakata, T., Mori, H., … Matsumura, M. (2006). Ligand-Free Platinum Nanoparticles Encapsulated in a Hollow Porous Carbon Shell as a Highly Active Heterogeneous Hydrogenation Catalyst. Angewandte Chemie, 118(42), 7221-7224. doi:10.1002/ange.200602700 es_ES
dc.description.references Kamat, P. V. (2009). Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support. The Journal of Physical Chemistry Letters, 1(2), 520-527. doi:10.1021/jz900265j es_ES
dc.description.references Xu, C., Wang, X., & Zhu, J. (2008). Graphene−Metal Particle Nanocomposites. The Journal of Physical Chemistry C, 112(50), 19841-19845. doi:10.1021/jp807989b es_ES
dc.description.references Shang, L., Bian, T., Zhang, B., Zhang, D., Wu, L.-Z., Tung, C.-H., … Zhang, T. (2013). Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie International Edition, 53(1), 250-254. doi:10.1002/anie.201306863 es_ES
dc.description.references Shang, L., Bian, T., Zhang, B., Zhang, D., Wu, L.-Z., Tung, C.-H., … Zhang, T. (2013). Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie, 126(1), 254-258. doi:10.1002/ange.201306863 es_ES
dc.description.references Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727 es_ES
dc.description.references Yoo, E., Okata, T., Akita, T., Kohyama, M., Nakamura, J., & Honma, I. (2009). Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Letters, 9(6), 2255-2259. doi:10.1021/nl900397t es_ES
dc.description.references Ding, J., Wang, M., Zhang, X., & Ran, C. (2013). Field emission mechanism insights of graphene decorated with ZnO nanoparticles. RSC Advances, 3(33), 14073. doi:10.1039/c3ra42052c es_ES
dc.description.references Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie, 125(45), 12029-12032. doi:10.1002/ange.201304505 es_ES
dc.description.references Lazareva, I., Koval, Y., Alam, M., Strömsdörfer, S., & Müller, P. (2007). Graphitization of polymer surfaces by low-energy ion irradiation. Applied Physics Letters, 90(26), 262108. doi:10.1063/1.2752738 es_ES
dc.description.references Buaki-Sogo, M., Serra, M., Primo, A., Alvaro, M., & Garcia, H. (2012). Alginate as Template in the Preparation of Active Titania Photocatalysts. ChemCatChem, 5(2), 513-518. doi:10.1002/cctc.201200386 es_ES
dc.description.references El Kadib, A., Primo, A., Molvinger, K., Bousmina, M., & Brunel, D. (2011). Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry – A European Journal, 17(28), 7940-7946. doi:10.1002/chem.201003740 es_ES
dc.description.references Kadib, A. E., Molvinger, K., Cacciaguerra, T., Bousmina, M., & Brunel, D. (2011). Chitosan templated synthesis of porous metal oxide microspheres with filamentary nanostructures. Microporous and Mesoporous Materials, 142(1), 301-307. doi:10.1016/j.micromeso.2010.12.012 es_ES
dc.description.references Lavorato, C., Primo, A., Molinari, R., & García, H. (2014). Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 4(2), 497-504. doi:10.1021/cs401068m es_ES
dc.description.references Shi, P., Su, R., Wan, F., Zhu, M., Li, D., & Xu, S. (2012). Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Applied Catalysis B: Environmental, 123-124, 265-272. doi:10.1016/j.apcatb.2012.04.043 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem