- -

Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols

Mostrar el registro completo del ítem

Blandez Barradas, JF.; Primo Arnau, AM.; Asiri, A.; Alvaro Rodríguez, MM.; García Gómez, H. (2014). Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols. Angewandte Chemie International Edition. 53(46):12581-12586. https://doi.org/10.1002/anie.201405669

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59972

Ficheros en el ítem

Metadatos del ítem

Título: Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols
Autor: Blandez Barradas, Juan Francisco Primo Arnau, Ana María Asiri, Abdullah Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Copper nanoparticles (NPs) supported on a series of undoped and doped graphene materials (Gs) have been obtained by pyrolysis of alginate or chitosan biopolymers, modified or not with boric acid, containing Cu2+ ...[+]
Palabras clave: Alcoxysilanes , Dehydrogenative coupling , Graphene , Heterogeneous catalysis , Metal nanoparticles
Derechos de uso: Cerrado
Fuente:
Angewandte Chemie International Edition. (issn: 1433-7851 ) (eissn: 1521-3773 )
DOI: 10.1002/anie.201405669
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/anie.201405669
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F013/
Agradecimientos:
Financial support by the Spanish Ministry of economy and competitiveness (Severo Ochoa and CTQ2012-32315) and Generalitat Valenciana Prometeo 2012-013) is gratefully acknowledged.
Tipo: Artículo

References

Belelli, P. ., Ferreira, M. ., & Damiani, D. . (2000). A theoretical and experimental study of the possible phenytriethoxysilane species found on treated silica. Journal of Molecular Catalysis A: Chemical, 159(2), 315-325. doi:10.1016/s1381-1169(00)00186-2

Díaz, I., & Pérez-Pariente, J. (2002). Synthesis of Spongelike Functionalized MCM-41 Materials from Gels Containing Amino Acids. Chemistry of Materials, 14(11), 4641-4646. doi:10.1021/cm020128a

Matheron, M., Gacoin, T., Boilot, J.-P., Bourgeois, A., Brunet-Bruneau, A., Rivory, J., … Biteau, J. (2005). Ordered mesoporous organosilica films. Studies in Surface Science and Catalysis, 327-334. doi:10.1016/s0167-2991(05)80225-3 [+]
Belelli, P. ., Ferreira, M. ., & Damiani, D. . (2000). A theoretical and experimental study of the possible phenytriethoxysilane species found on treated silica. Journal of Molecular Catalysis A: Chemical, 159(2), 315-325. doi:10.1016/s1381-1169(00)00186-2

Díaz, I., & Pérez-Pariente, J. (2002). Synthesis of Spongelike Functionalized MCM-41 Materials from Gels Containing Amino Acids. Chemistry of Materials, 14(11), 4641-4646. doi:10.1021/cm020128a

Matheron, M., Gacoin, T., Boilot, J.-P., Bourgeois, A., Brunet-Bruneau, A., Rivory, J., … Biteau, J. (2005). Ordered mesoporous organosilica films. Studies in Surface Science and Catalysis, 327-334. doi:10.1016/s0167-2991(05)80225-3

Gómez-Avilés, A., Aranda, P., Fernandes, F. M., Belver, C., & Ruiz-Hitzky, E. (2013). Silica-Sepiolite Nanoarchitectures. Journal of Nanoscience and Nanotechnology, 13(4), 2897-2907. doi:10.1166/jnn.2013.7429

Negrete, Letoffe, J.-M., Putaux, J.-L., David, L., & Bourgeat-Lami, E. (2004). Aqueous Dispersions of Silane-Functionalized Laponite Clay Platelets. A First Step toward the Elaboration of Water-Based Polymer/Clay Nanocomposites. Langmuir, 20(5), 1564-1571. doi:10.1021/la0349267

Jaber, M., Gaslain, F. O. M., & Miehé-Brendlé, J. (2009). Rapid and Direct Synthesis of Spherical Organotalc. Clays and Clay Minerals, 57(1), 35-39. doi:10.1346/ccmn.2009.0570103

Stratakis, M., & Garcia, H. (2012). Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 112(8), 4469-4506. doi:10.1021/cr3000785

Mitsudome, T., Yamamoto, Y., Noujima, A., Mizugaki, T., Jitsukawa, K., & Kaneda, K. (2013). Highly Efficient Etherification of Silanes by Using a Gold Nanoparticle Catalyst: Remarkable Effect of O2. Chemistry - A European Journal, 19(43), 14398-14402. doi:10.1002/chem.201302807

Taguchi, T., Isozaki, K., & Miki, K. (2012). Enhanced Catalytic Activity of Self-Assembled-Monolayer-Capped Gold Nanoparticles. Advanced Materials, 24(48), 6462-6467. doi:10.1002/adma.201202979

Rendler, S., Plefka, O., Karatas, B., Auer, G., Fröhlich, R., Mück-Lichtenfeld, C., … Oestreich, M. (2008). Stereoselective Alcohol Silylation by Dehydrogenative Si-O Coupling: Scope, Limitations, and Mechanism of the Cu-H-Catalyzed Non-Enzymatic Kinetic Resolution with Silicon-Stereogenic Silanes. Chemistry - A European Journal, 14(36), 11512-11528. doi:10.1002/chem.200801377

Kira, K., Tanda, H., Hamajima, A., Baba, T., Takai, S., & Isobe, M. (2002). Mechanistic studies on the hydrosilylation of an acetylene cobalt complex; trapping an active catalyst Co2(CO)6 causing olefin-isomerization and O-silylation. Tetrahedron, 58(32), 6485-6492. doi:10.1016/s0040-4020(02)00659-2

Park, J.-W., & Jun, C.-H. (2007). Highly Efficient O-Silylation of Alcohol with Vinylsilane Using a Rh(I)/HCl Catalyst at Room Temperature. Organic Letters, 9(20), 4073-4076. doi:10.1021/ol701909e

Hilal, H. S., Rabah, A., Khatib, I. S., & Schreiner, A. F. (1990). A new silica-supported platinum-amine catalyst for the reaction of silanes with alcohols. Journal of Molecular Catalysis, 61(1), 1-17. doi:10.1016/0304-5102(90)85188-n

Ito, H., Takagi, K., Miyahara, T., & Sawamura, M. (2005). Gold(I)−Phosphine Catalyst for the Highly Chemoselective Dehydrogenative Silylation of Alcohols. Organic Letters, 7(14), 3001-3004. doi:10.1021/ol050979z

Zazo, J. A., Casas, J. A., Mohedano, A. F., & Rodríguez, J. J. (2006). Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Applied Catalysis B: Environmental, 65(3-4), 261-268. doi:10.1016/j.apcatb.2006.02.008

Ikeda, S., Ishino, S., Harada, T., Okamoto, N., Sakata, T., Mori, H., … Matsumura, M. (2006). Ligand-Free Platinum Nanoparticles Encapsulated in a Hollow Porous Carbon Shell as a Highly Active Heterogeneous Hydrogenation Catalyst. Angewandte Chemie International Edition, 45(42), 7063-7066. doi:10.1002/anie.200602700

Ikeda, S., Ishino, S., Harada, T., Okamoto, N., Sakata, T., Mori, H., … Matsumura, M. (2006). Ligand-Free Platinum Nanoparticles Encapsulated in a Hollow Porous Carbon Shell as a Highly Active Heterogeneous Hydrogenation Catalyst. Angewandte Chemie, 118(42), 7221-7224. doi:10.1002/ange.200602700

Kamat, P. V. (2009). Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support. The Journal of Physical Chemistry Letters, 1(2), 520-527. doi:10.1021/jz900265j

Xu, C., Wang, X., & Zhu, J. (2008). Graphene−Metal Particle Nanocomposites. The Journal of Physical Chemistry C, 112(50), 19841-19845. doi:10.1021/jp807989b

Shang, L., Bian, T., Zhang, B., Zhang, D., Wu, L.-Z., Tung, C.-H., … Zhang, T. (2013). Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie International Edition, 53(1), 250-254. doi:10.1002/anie.201306863

Shang, L., Bian, T., Zhang, B., Zhang, D., Wu, L.-Z., Tung, C.-H., … Zhang, T. (2013). Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie, 126(1), 254-258. doi:10.1002/ange.201306863

Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727

Yoo, E., Okata, T., Akita, T., Kohyama, M., Nakamura, J., & Honma, I. (2009). Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Letters, 9(6), 2255-2259. doi:10.1021/nl900397t

Ding, J., Wang, M., Zhang, X., & Ran, C. (2013). Field emission mechanism insights of graphene decorated with ZnO nanoparticles. RSC Advances, 3(33), 14073. doi:10.1039/c3ra42052c

Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653

Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505

Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie, 125(45), 12029-12032. doi:10.1002/ange.201304505

Lazareva, I., Koval, Y., Alam, M., Strömsdörfer, S., & Müller, P. (2007). Graphitization of polymer surfaces by low-energy ion irradiation. Applied Physics Letters, 90(26), 262108. doi:10.1063/1.2752738

Buaki-Sogo, M., Serra, M., Primo, A., Alvaro, M., & Garcia, H. (2012). Alginate as Template in the Preparation of Active Titania Photocatalysts. ChemCatChem, 5(2), 513-518. doi:10.1002/cctc.201200386

El Kadib, A., Primo, A., Molvinger, K., Bousmina, M., & Brunel, D. (2011). Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry – A European Journal, 17(28), 7940-7946. doi:10.1002/chem.201003740

Kadib, A. E., Molvinger, K., Cacciaguerra, T., Bousmina, M., & Brunel, D. (2011). Chitosan templated synthesis of porous metal oxide microspheres with filamentary nanostructures. Microporous and Mesoporous Materials, 142(1), 301-307. doi:10.1016/j.micromeso.2010.12.012

Lavorato, C., Primo, A., Molinari, R., & García, H. (2014). Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 4(2), 497-504. doi:10.1021/cs401068m

Shi, P., Su, R., Wan, F., Zhu, M., Li, D., & Xu, S. (2012). Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Applied Catalysis B: Environmental, 123-124, 265-272. doi:10.1016/j.apcatb.2012.04.043

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem