- -

Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles

Show full item record

De La Torre, C.; Mondragón Martínez, L.; Coll Merino, MC.; Sancenón Galarza, F.; Marcos Martínez, MD.; Martínez Mañez, R.; Amoros Del Toro, PJ.... (2014). Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal. 20(47):15309-15314. https://doi.org/10.1002/chem.201404382

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60098

Files in this item

Item Metadata

Title: Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles
Author: de la torre, Cristina Mondragón Martínez, Laura Coll Merino, Mª Carmen Sancenón Galarza, Félix Marcos Martínez, María Dolores Martínez Mañez, Ramón Amoros del Toro, Pedro Jose Pérez Payá, Enrique Orzáez Calatayud, Mar
UPV Unit: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
New capped silica mesoporous nanoparticles for intracellular controlled cargo release within cathepsin B expressing cells are described. Nanometric mesoporous MCM-41 supports loaded with safranin O (S1-P) or doxorubicin ...[+]
Subjects: Cathepsin B , controlled release , gated mesoporous materials , nanoparticles , peptides
Copyrigths: Cerrado
Source:
Chemistry - A European Journal. (issn: 0947-6539 ) (eissn: 1521-3765 )
DOI: 10.1002/chem.201404382
Publisher:
Wiley-VCH Verlag
Publisher version: http://dx.doi.org/10.1002/chem.201404382
Project ID:
info:eu-repo/grantAgreement/MICINN//SAF2010-15512/ES/MECANISMOS MOLECULARES DE MODULADORES DE APOPTOSIS/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/
Thanks:
We thank the Spanish Government (Project MAT2012-38429-C04 and SAF2010-15512) and the Generalitat Valenciana (Project PROMETEO/2009/016 and PROMETEOII/2014/061) for support. C. T. is grateful to the Spanish Ministry of ...[+]
Type: Artículo

References

Ge, Z., & Liu, S. (2013). Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chemical Society Reviews, 42(17), 7289. doi:10.1039/c3cs60048c

Farokhzad, O. C., & Langer, R. (2009). Impact of Nanotechnology on Drug Delivery. ACS Nano, 3(1), 16-20. doi:10.1021/nn900002m

Wang, S. (2009). Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials, 117(1-2), 1-9. doi:10.1016/j.micromeso.2008.07.002 [+]
Ge, Z., & Liu, S. (2013). Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chemical Society Reviews, 42(17), 7289. doi:10.1039/c3cs60048c

Farokhzad, O. C., & Langer, R. (2009). Impact of Nanotechnology on Drug Delivery. ACS Nano, 3(1), 16-20. doi:10.1021/nn900002m

Wang, S. (2009). Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials, 117(1-2), 1-9. doi:10.1016/j.micromeso.2008.07.002

Zhang, X.-X., Eden, H. S., & Chen, X. (2012). Peptides in cancer nanomedicine: Drug carriers, targeting ligands and protease substrates. Journal of Controlled Release, 159(1), 2-13. doi:10.1016/j.jconrel.2011.10.023

He, Q., & Shi, J. (2013). MSN Anti-Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition. Advanced Materials, 26(3), 391-411. doi:10.1002/adma.201303123

Taylor-Pashow, K. M. L., Della Rocca, J., Huxford, R. C., & Lin, W. (2010). Hybrid nanomaterials for biomedical applications. Chemical Communications, 46(32), 5832. doi:10.1039/c002073g

Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d

Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g

Colilla, M., González, B., & Vallet-Regí, M. (2013). Mesoporous silicananoparticles for the design of smart delivery nanodevices. Biomater. Sci., 1(2), 114-134. doi:10.1039/c2bm00085g

He, Q., & Shi, J. (2011). Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry, 21(16), 5845. doi:10.1039/c0jm03851b

Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020

Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m

Kickelbick, G. (2004). Mesoporöse anorganisch-organische Hybridmaterialien. Angewandte Chemie, 116(24), 3164-3166. doi:10.1002/ange.200301751

Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751

Cotí, K. K., Belowich, M. E., Liong, M., Ambrogio, M. W., Lau, Y. A., Khatib, H. A., … Stoddart, J. F. (2009). Mechanised nanoparticles for drug delivery. Nanoscale, 1(1), 16. doi:10.1039/b9nr00162j

Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362

Lai, J., Mu, X., Xu, Y., Wu, X., Wu, C., Li, C., … Zhao, Y. (2010). Light-responsive nanogated ensemble based on polymer grafted mesoporous silica hybrid nanoparticles. Chemical Communications, 46(39), 7370. doi:10.1039/c0cc02914a

Agostini, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., Soto, J., & Amorós, P. (2012). A Photoactivated Molecular Gate. Chemistry - A European Journal, 18(39), 12218-12221. doi:10.1002/chem.201201127

Lee, J., Park, J., Singha, K., & Kim, W. J. (2013). Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker. Chemical Communications, 49(15), 1545. doi:10.1039/c2cc38510d

Guardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J., & Zink, J. I. (2013). Activation of Snap-Top Capped Mesoporous Silica Nanocontainers Using Two Near-Infrared Photons. Journal of the American Chemical Society, 135(38), 14000-14003. doi:10.1021/ja407331n

Hernandez, R., Tseng, H.-R., Wong, J. W., Stoddart, J. F., & Zink, J. I. (2004). An Operational Supramolecular Nanovalve. Journal of the American Chemical Society, 126(11), 3370-3371. doi:10.1021/ja039424u

Mortera, R., Vivero-Escoto, J., Slowing, I. I., Garrone, E., Onida, B., & Lin, V. S.-Y. (2009). Cell-induced intracellular controlled release of membrane impermeable cysteine from a mesoporous silica nanoparticle-based drug delivery system. Chemical Communications, (22), 3219. doi:10.1039/b900559e

Wang, L., Kim, M., Fang, Q., Min, J., Jeon, W. I., Lee, S. Y., … Lee, S. B. (2013). Hydrophobic end-gated silica nanotubes for intracellular glutathione-stimulated drug delivery in drug-resistant cancer cells. Chemical Communications, 49(31), 3194. doi:10.1039/c3cc38761e

Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(22), 5556-5561. doi:10.1002/ange.201107960

Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(22), 5460-5465. doi:10.1002/anie.201107960

Meng, H., Xue, M., Xia, T., Zhao, Y.-L., Tamanoi, F., Stoddart, J. F., … Nel, A. E. (2010). Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 132(36), 12690-12697. doi:10.1021/ja104501a

Guillet-Nicolas, R., Popat, A., Bridot, J.-L., Monteith, G., Qiao, S. Z., & Kleitz, F. (2013). pH-Responsive Nutraceutical-Mesoporous Silica Nanoconjugates with Enhanced Colloidal Stability. Angewandte Chemie, 125(8), 2374-2378. doi:10.1002/ange.201208840

Guillet-Nicolas, R., Popat, A., Bridot, J.-L., Monteith, G., Qiao, S. Z., & Kleitz, F. (2013). pH-Responsive Nutraceutical-Mesoporous Silica Nanoconjugates with Enhanced Colloidal Stability. Angewandte Chemie International Edition, 52(8), 2318-2322. doi:10.1002/anie.201208840

Xue, M., & Zink, J. I. (2013). An Enzymatic Chemical Amplifier Based on Mechanized Nanoparticles. Journal of the American Chemical Society, 135(47), 17659-17662. doi:10.1021/ja4066317

Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703d

Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 123(47), 11368-11371. doi:10.1002/ange.201102756

Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756

De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g

Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). Ein programmierbares, DNA-basiertes molekulares Ventil für kolloidales, mesoporöses Siliciumoxid. Angewandte Chemie, 122(28), 4842-4845. doi:10.1002/ange.201000827

Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827

Zhang, P., Cheng, F., Zhou, R., Cao, J., Li, J., Burda, C., … Zhu, J.-J. (2014). DNA-Hybrid-Gated Multifunctional Mesoporous Silica Nanocarriers for Dual-Targeted and MicroRNA-Responsive Controlled Drug Delivery. Angewandte Chemie International Edition, 53(9), 2371-2375. doi:10.1002/anie.201308920

Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847

Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847

Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k

Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selektiver, hoch empfindlicher und schneller Nachweis genomischer DNA mit gesteuerten Materialien am Beispiel vonMycoplasma. Angewandte Chemie, 125(34), 9106-9110. doi:10.1002/ange.201302954

Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection. Angewandte Chemie International Edition, 52(34), 8938-8942. doi:10.1002/anie.201302954

Hernandez, F. J., Hernandez, L. I., Pinto, A., Schäfer, T., & Özalp, V. C. (2013). Targeting cancer cells with controlled release nanocapsules based on a single aptamer. Chemical Communications, 49(13), 1285. doi:10.1039/c2cc37370j

Climent, E., Martínez-Máñez, R., Maquieira, Á., Sancenón, F., Marcos, M. D., Brun, E. M., … Amorós, P. (2012). Antibody-Capped Mesoporous Nanoscopic Materials: Design of a Probe for the Selective Chromo-Fluorogenic Detection of Finasteride. ChemistryOpen, 1(6), 251-259. doi:10.1002/open.201100008

Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469

Sun, Y.-L., Zhou, Y., Li, Q.-L., & Yang, Y.-W. (2013). Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release. Chemical Communications, 49(79), 9033. doi:10.1039/c3cc45216f

Agostini, A., Mondragón, L., Pascual, L., Aznar, E., Coll, C., Martínez-Máñez, R., … Gil, S. (2012). Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 28(41), 14766-14776. doi:10.1021/la303161e

Chen, Z., Li, Z., Lin, Y., Yin, M., Ren, J., & Qu, X. (2013). Bioresponsive Hyaluronic Acid-Capped Mesoporous Silica Nanoparticles for Targeted Drug Delivery. Chemistry - A European Journal, 19(5), 1778-1783. doi:10.1002/chem.201202038

Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d

Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880

Park, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085

Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663

Agostini, A., Mondragón, L., Coll, C., Aznar, E., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2012). Dual Enzyme-Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 1(1), 17-20. doi:10.1002/open.201200003

Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b

Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148

Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133

Tan, G.-J., Peng, Z.-K., Lu, J.-P., & Tang, F.-Q. (2013). Cathepsins mediate tumor metastasis. World Journal of Biological Chemistry, 4(4), 91. doi:10.4331/wjbc.v4.i4.91

Gondi, C. S., & Rao, J. S. (2013). Cathepsin B as a cancer target. Expert Opinion on Therapeutic Targets, 17(3), 281-291. doi:10.1517/14728222.2013.740461

Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., & Turk, D. (2012). Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1824(1), 68-88. doi:10.1016/j.bbapap.2011.10.002

Gobec, S., & Frlan, R. (2006). Inhibitors of Cathepsin B. Current Medicinal Chemistry, 13(19), 2309-2327. doi:10.2174/092986706777935122

Calderón, M., Graeser, R., Kratz, F., & Haag, R. (2009). Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorganic & Medicinal Chemistry Letters, 19(14), 3725-3728. doi:10.1016/j.bmcl.2009.05.058

Haag, R., & Kratz, F. (2006). Polymere Therapeutika: Konzepte und Anwendungen. Angewandte Chemie, 118(8), 1218-1237. doi:10.1002/ange.200502113

Haag, R., & Kratz, F. (2006). Polymer Therapeutics: Concepts and Applications. Angewandte Chemie International Edition, 45(8), 1198-1215. doi:10.1002/anie.200502113

Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer, 6(9), 688-701. doi:10.1038/nrc1958

Kiick, K. L. (2007). MATERIALS SCIENCE: Polymer Therapeutics. Science, 317(5842), 1182-1183. doi:10.1126/science.1145951

ZHONG, Y.-J., SHAO, L.-H., & LI, Y. (2012). Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy. International Journal of Oncology, 42(2), 373-383. doi:10.3892/ijo.2012.1754

Cotrin, S. S., Puzer, L., de Souza Judice, W. A., Juliano, L., Carmona, A. K., & Juliano, M. A. (2004). Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides to define substrate specificity of carboxydipeptidases: assays with human cathepsin B. Analytical Biochemistry, 335(2), 244-252. doi:10.1016/j.ab.2004.09.012

Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t

El Haskouri, J., Zárate, D. O. de, Guillem, C., Latorre, J., Caldés, M., Beltrán, A., … Amorós, P. (2002). Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/. Chemical Communications, (4), 330-331. doi:10.1039/b110883b

Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). Angewandte Chemie, 114(14), 2708-2711. doi:10.1002/1521-3757(20020715)114:14<2708::aid-ange2708>3.0.co;2-0

Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective «Ligation» of Azides and Terminal Alkynes. Angewandte Chemie International Edition, 41(14), 2596-2599. doi:10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4

Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on Solid Phase:  [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, 67(9), 3057-3064. doi:10.1021/jo011148j

Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen. Angewandte Chemie, 113(11), 2056-2075. doi:10.1002/1521-3757(20010601)113:11<2056::aid-ange2056>3.0.co;2-w

Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5

Lynch, I., & Dawson, K. A. (2008). Protein-nanoparticle interactions. Nano Today, 3(1-2), 40-47. doi:10.1016/s1748-0132(08)70014-8

Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., & Dawson, K. A. (2008). Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences, 105(38), 14265-14270. doi:10.1073/pnas.0805135105

McConnell, R. M., York, J. L., Frizzell, D., & Ezell, C. (1993). Inhibition studies of some serine and thiol proteinases by new leupeptin analogs. Journal of Medicinal Chemistry, 36(8), 1084-1089. doi:10.1021/jm00060a016

Deussing, J., Roth, W., Saftig, P., Peters, C., Ploegh, H. L., & Villadangos, J. A. (1998). Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proceedings of the National Academy of Sciences, 95(8), 4516-4521. doi:10.1073/pnas.95.8.4516

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record