- -

Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author de la torre, Cristina es_ES
dc.contributor.author Mondragón Martínez, Laura es_ES
dc.contributor.author Coll Merino, Mª Carmen es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Martínez Mañez, Ramón es_ES
dc.contributor.author Amoros del Toro, Pedro Jose es_ES
dc.contributor.author Pérez Payá, Enrique es_ES
dc.contributor.author Orzáez Calatayud, Mar es_ES
dc.date.accessioned 2016-01-21T09:48:30Z
dc.date.issued 2014-11-17
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/60098
dc.description.abstract New capped silica mesoporous nanoparticles for intracellular controlled cargo release within cathepsin B expressing cells are described. Nanometric mesoporous MCM-41 supports loaded with safranin O (S1-P) or doxorubicin (S2-P) containing a molecular gate based on a cathepsin B target peptidic sequence were synthesized. Solids were designed to show "zero delivery" and to display cargo release in the presence of cathepsin B enzyme, which selectively hydrolyzed in vitro the capping peptide sequence. Controlled delivery in HeLa, MEFs WT, and MEFs lacking cathepsin B cell lines were also tested. Release of safranin O and doxorubicin in these cells took place when cathepsin B was active or present. Cells treated with S2-P showed a fall in cell viability due to nanoparticles internalization, cathepsin B hydrolysis of the capping peptide, and cytotoxic agent delivery, proving the possible use of these nanodevices as new therapeutic tools for cancer treatment. es_ES
dc.description.sponsorship We thank the Spanish Government (Project MAT2012-38429-C04 and SAF2010-15512) and the Generalitat Valenciana (Project PROMETEO/2009/016 and PROMETEOII/2014/061) for support. C. T. is grateful to the Spanish Ministry of Science and Innovation for her PhD fellowship. L. M. thanks the Generalitat Valenciana and Nice city council for their postdoctoral contracts VALI+D and "Aides Individuelles aux Jeunes Chercheurs 2011". C. C. thanks the Generalitat Valenciana for their postdoctoral contract VALI+D. M.O. thanks the CIPF for her postdoctoral fellowship. We thank the confocal microscopy service, Alberto Hernndez and Eva Mara La Fuente from CIPF for their technical support. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cathepsin B es_ES
dc.subject controlled release es_ES
dc.subject gated mesoporous materials es_ES
dc.subject nanoparticles es_ES
dc.subject peptides es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201404382
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//SAF2010-15512/ES/MECANISMOS MOLECULARES DE MODULADORES DE APOPTOSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation De La Torre, C.; Mondragón Martínez, L.; Coll Merino, MC.; Sancenón Galarza, F.; Marcos Martínez, MD.; Martínez Mañez, R.; Amoros Del Toro, PJ.... (2014). Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal. 20(47):15309-15314. https://doi.org/10.1002/chem.201404382 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201404382 es_ES
dc.description.upvformatpinicio 15309 es_ES
dc.description.upvformatpfin 15314 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 47 es_ES
dc.relation.senia 276590 es_ES
dc.identifier.eissn 1521-3765
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Centro de Investigación Príncipe Felipe es_ES
dc.description.references Ge, Z., & Liu, S. (2013). Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chemical Society Reviews, 42(17), 7289. doi:10.1039/c3cs60048c es_ES
dc.description.references Farokhzad, O. C., & Langer, R. (2009). Impact of Nanotechnology on Drug Delivery. ACS Nano, 3(1), 16-20. doi:10.1021/nn900002m es_ES
dc.description.references Wang, S. (2009). Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials, 117(1-2), 1-9. doi:10.1016/j.micromeso.2008.07.002 es_ES
dc.description.references Zhang, X.-X., Eden, H. S., & Chen, X. (2012). Peptides in cancer nanomedicine: Drug carriers, targeting ligands and protease substrates. Journal of Controlled Release, 159(1), 2-13. doi:10.1016/j.jconrel.2011.10.023 es_ES
dc.description.references He, Q., & Shi, J. (2013). MSN Anti-Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition. Advanced Materials, 26(3), 391-411. doi:10.1002/adma.201303123 es_ES
dc.description.references Taylor-Pashow, K. M. L., Della Rocca, J., Huxford, R. C., & Lin, W. (2010). Hybrid nanomaterials for biomedical applications. Chemical Communications, 46(32), 5832. doi:10.1039/c002073g es_ES
dc.description.references Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d es_ES
dc.description.references Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g es_ES
dc.description.references Colilla, M., González, B., & Vallet-Regí, M. (2013). Mesoporous silicananoparticles for the design of smart delivery nanodevices. Biomater. Sci., 1(2), 114-134. doi:10.1039/c2bm00085g es_ES
dc.description.references He, Q., & Shi, J. (2011). Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry, 21(16), 5845. doi:10.1039/c0jm03851b es_ES
dc.description.references Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 es_ES
dc.description.references Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m es_ES
dc.description.references Kickelbick, G. (2004). Mesoporöse anorganisch-organische Hybridmaterialien. Angewandte Chemie, 116(24), 3164-3166. doi:10.1002/ange.200301751 es_ES
dc.description.references Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751 es_ES
dc.description.references Cotí, K. K., Belowich, M. E., Liong, M., Ambrogio, M. W., Lau, Y. A., Khatib, H. A., … Stoddart, J. F. (2009). Mechanised nanoparticles for drug delivery. Nanoscale, 1(1), 16. doi:10.1039/b9nr00162j es_ES
dc.description.references Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362 es_ES
dc.description.references Lai, J., Mu, X., Xu, Y., Wu, X., Wu, C., Li, C., … Zhao, Y. (2010). Light-responsive nanogated ensemble based on polymer grafted mesoporous silica hybrid nanoparticles. Chemical Communications, 46(39), 7370. doi:10.1039/c0cc02914a es_ES
dc.description.references Agostini, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., Soto, J., & Amorós, P. (2012). A Photoactivated Molecular Gate. Chemistry - A European Journal, 18(39), 12218-12221. doi:10.1002/chem.201201127 es_ES
dc.description.references Lee, J., Park, J., Singha, K., & Kim, W. J. (2013). Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker. Chemical Communications, 49(15), 1545. doi:10.1039/c2cc38510d es_ES
dc.description.references Guardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J., & Zink, J. I. (2013). Activation of Snap-Top Capped Mesoporous Silica Nanocontainers Using Two Near-Infrared Photons. Journal of the American Chemical Society, 135(38), 14000-14003. doi:10.1021/ja407331n es_ES
dc.description.references Hernandez, R., Tseng, H.-R., Wong, J. W., Stoddart, J. F., & Zink, J. I. (2004). An Operational Supramolecular Nanovalve. Journal of the American Chemical Society, 126(11), 3370-3371. doi:10.1021/ja039424u es_ES
dc.description.references Mortera, R., Vivero-Escoto, J., Slowing, I. I., Garrone, E., Onida, B., & Lin, V. S.-Y. (2009). Cell-induced intracellular controlled release of membrane impermeable cysteine from a mesoporous silica nanoparticle-based drug delivery system. Chemical Communications, (22), 3219. doi:10.1039/b900559e es_ES
dc.description.references Wang, L., Kim, M., Fang, Q., Min, J., Jeon, W. I., Lee, S. Y., … Lee, S. B. (2013). Hydrophobic end-gated silica nanotubes for intracellular glutathione-stimulated drug delivery in drug-resistant cancer cells. Chemical Communications, 49(31), 3194. doi:10.1039/c3cc38761e es_ES
dc.description.references Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(22), 5556-5561. doi:10.1002/ange.201107960 es_ES
dc.description.references Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(22), 5460-5465. doi:10.1002/anie.201107960 es_ES
dc.description.references Meng, H., Xue, M., Xia, T., Zhao, Y.-L., Tamanoi, F., Stoddart, J. F., … Nel, A. E. (2010). Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 132(36), 12690-12697. doi:10.1021/ja104501a es_ES
dc.description.references Guillet-Nicolas, R., Popat, A., Bridot, J.-L., Monteith, G., Qiao, S. Z., & Kleitz, F. (2013). pH-Responsive Nutraceutical-Mesoporous Silica Nanoconjugates with Enhanced Colloidal Stability. Angewandte Chemie, 125(8), 2374-2378. doi:10.1002/ange.201208840 es_ES
dc.description.references Guillet-Nicolas, R., Popat, A., Bridot, J.-L., Monteith, G., Qiao, S. Z., & Kleitz, F. (2013). pH-Responsive Nutraceutical-Mesoporous Silica Nanoconjugates with Enhanced Colloidal Stability. Angewandte Chemie International Edition, 52(8), 2318-2322. doi:10.1002/anie.201208840 es_ES
dc.description.references Xue, M., & Zink, J. I. (2013). An Enzymatic Chemical Amplifier Based on Mechanized Nanoparticles. Journal of the American Chemical Society, 135(47), 17659-17662. doi:10.1021/ja4066317 es_ES
dc.description.references Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703d es_ES
dc.description.references Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 123(47), 11368-11371. doi:10.1002/ange.201102756 es_ES
dc.description.references Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756 es_ES
dc.description.references De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g es_ES
dc.description.references Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). Ein programmierbares, DNA-basiertes molekulares Ventil für kolloidales, mesoporöses Siliciumoxid. Angewandte Chemie, 122(28), 4842-4845. doi:10.1002/ange.201000827 es_ES
dc.description.references Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827 es_ES
dc.description.references Zhang, P., Cheng, F., Zhou, R., Cao, J., Li, J., Burda, C., … Zhu, J.-J. (2014). DNA-Hybrid-Gated Multifunctional Mesoporous Silica Nanocarriers for Dual-Targeted and MicroRNA-Responsive Controlled Drug Delivery. Angewandte Chemie International Edition, 53(9), 2371-2375. doi:10.1002/anie.201308920 es_ES
dc.description.references Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847 es_ES
dc.description.references Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847 es_ES
dc.description.references Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k es_ES
dc.description.references Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selektiver, hoch empfindlicher und schneller Nachweis genomischer DNA mit gesteuerten Materialien am Beispiel vonMycoplasma. Angewandte Chemie, 125(34), 9106-9110. doi:10.1002/ange.201302954 es_ES
dc.description.references Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection. Angewandte Chemie International Edition, 52(34), 8938-8942. doi:10.1002/anie.201302954 es_ES
dc.description.references Hernandez, F. J., Hernandez, L. I., Pinto, A., Schäfer, T., & Özalp, V. C. (2013). Targeting cancer cells with controlled release nanocapsules based on a single aptamer. Chemical Communications, 49(13), 1285. doi:10.1039/c2cc37370j es_ES
dc.description.references Climent, E., Martínez-Máñez, R., Maquieira, Á., Sancenón, F., Marcos, M. D., Brun, E. M., … Amorós, P. (2012). Antibody-Capped Mesoporous Nanoscopic Materials: Design of a Probe for the Selective Chromo-Fluorogenic Detection of Finasteride. ChemistryOpen, 1(6), 251-259. doi:10.1002/open.201100008 es_ES
dc.description.references Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 es_ES
dc.description.references Sun, Y.-L., Zhou, Y., Li, Q.-L., & Yang, Y.-W. (2013). Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release. Chemical Communications, 49(79), 9033. doi:10.1039/c3cc45216f es_ES
dc.description.references Agostini, A., Mondragón, L., Pascual, L., Aznar, E., Coll, C., Martínez-Máñez, R., … Gil, S. (2012). Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 28(41), 14766-14776. doi:10.1021/la303161e es_ES
dc.description.references Chen, Z., Li, Z., Lin, Y., Yin, M., Ren, J., & Qu, X. (2013). Bioresponsive Hyaluronic Acid-Capped Mesoporous Silica Nanoparticles for Targeted Drug Delivery. Chemistry - A European Journal, 19(5), 1778-1783. doi:10.1002/chem.201202038 es_ES
dc.description.references Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d es_ES
dc.description.references Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880 es_ES
dc.description.references Park, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 es_ES
dc.description.references Agostini, A., Mondragón, L., Coll, C., Aznar, E., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2012). Dual Enzyme-Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 1(1), 17-20. doi:10.1002/open.201200003 es_ES
dc.description.references Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b es_ES
dc.description.references Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148 es_ES
dc.description.references Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133 es_ES
dc.description.references Tan, G.-J., Peng, Z.-K., Lu, J.-P., & Tang, F.-Q. (2013). Cathepsins mediate tumor metastasis. World Journal of Biological Chemistry, 4(4), 91. doi:10.4331/wjbc.v4.i4.91 es_ES
dc.description.references Gondi, C. S., & Rao, J. S. (2013). Cathepsin B as a cancer target. Expert Opinion on Therapeutic Targets, 17(3), 281-291. doi:10.1517/14728222.2013.740461 es_ES
dc.description.references Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., & Turk, D. (2012). Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1824(1), 68-88. doi:10.1016/j.bbapap.2011.10.002 es_ES
dc.description.references Gobec, S., & Frlan, R. (2006). Inhibitors of Cathepsin B. Current Medicinal Chemistry, 13(19), 2309-2327. doi:10.2174/092986706777935122 es_ES
dc.description.references Calderón, M., Graeser, R., Kratz, F., & Haag, R. (2009). Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorganic & Medicinal Chemistry Letters, 19(14), 3725-3728. doi:10.1016/j.bmcl.2009.05.058 es_ES
dc.description.references Haag, R., & Kratz, F. (2006). Polymere Therapeutika: Konzepte und Anwendungen. Angewandte Chemie, 118(8), 1218-1237. doi:10.1002/ange.200502113 es_ES
dc.description.references Haag, R., & Kratz, F. (2006). Polymer Therapeutics: Concepts and Applications. Angewandte Chemie International Edition, 45(8), 1198-1215. doi:10.1002/anie.200502113 es_ES
dc.description.references Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer, 6(9), 688-701. doi:10.1038/nrc1958 es_ES
dc.description.references Kiick, K. L. (2007). MATERIALS SCIENCE: Polymer Therapeutics. Science, 317(5842), 1182-1183. doi:10.1126/science.1145951 es_ES
dc.description.references ZHONG, Y.-J., SHAO, L.-H., & LI, Y. (2012). Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy. International Journal of Oncology, 42(2), 373-383. doi:10.3892/ijo.2012.1754 es_ES
dc.description.references Cotrin, S. S., Puzer, L., de Souza Judice, W. A., Juliano, L., Carmona, A. K., & Juliano, M. A. (2004). Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides to define substrate specificity of carboxydipeptidases: assays with human cathepsin B. Analytical Biochemistry, 335(2), 244-252. doi:10.1016/j.ab.2004.09.012 es_ES
dc.description.references Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t es_ES
dc.description.references El Haskouri, J., Zárate, D. O. de, Guillem, C., Latorre, J., Caldés, M., Beltrán, A., … Amorós, P. (2002). Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/. Chemical Communications, (4), 330-331. doi:10.1039/b110883b es_ES
dc.description.references Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). Angewandte Chemie, 114(14), 2708-2711. doi:10.1002/1521-3757(20020715)114:14<2708::aid-ange2708>3.0.co;2-0 es_ES
dc.description.references Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective «Ligation» of Azides and Terminal Alkynes. Angewandte Chemie International Edition, 41(14), 2596-2599. doi:10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4 es_ES
dc.description.references Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on Solid Phase:  [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, 67(9), 3057-3064. doi:10.1021/jo011148j es_ES
dc.description.references Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen. Angewandte Chemie, 113(11), 2056-2075. doi:10.1002/1521-3757(20010601)113:11<2056::aid-ange2056>3.0.co;2-w es_ES
dc.description.references Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5 es_ES
dc.description.references Lynch, I., & Dawson, K. A. (2008). Protein-nanoparticle interactions. Nano Today, 3(1-2), 40-47. doi:10.1016/s1748-0132(08)70014-8 es_ES
dc.description.references Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., & Dawson, K. A. (2008). Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences, 105(38), 14265-14270. doi:10.1073/pnas.0805135105 es_ES
dc.description.references McConnell, R. M., York, J. L., Frizzell, D., & Ezell, C. (1993). Inhibition studies of some serine and thiol proteinases by new leupeptin analogs. Journal of Medicinal Chemistry, 36(8), 1084-1089. doi:10.1021/jm00060a016 es_ES
dc.description.references Deussing, J., Roth, W., Saftig, P., Peters, C., Ploegh, H. L., & Villadangos, J. A. (1998). Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proceedings of the National Academy of Sciences, 95(8), 4516-4521. doi:10.1073/pnas.95.8.4516 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem