- -

Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barba Bon, Andrea es_ES
dc.contributor.author Costero Nieto, Ana María es_ES
dc.contributor.author Gil Grau, Salvador es_ES
dc.contributor.author Harriman, Anthony es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.date.accessioned 2016-01-21T09:58:24Z
dc.date.issued 2014-05-19
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/60099
dc.description.abstract Two chromo-fluorogenic probes, each based on the boron dipyrromethene core, have been developed for the detection of nerve-agent mimics. These chemosensors display both a color change and a significant enhancement of fluorescence in the presence of diethylcyanophosphonate (DCNP) and diisopropylfluorophosphate (DFP). No interference from other organophosphorus compounds or acids has been observed. Two portable chemosensor kits have been developed and tested to demonstrate its practical application in real-time monitoring. es_ES
dc.description.sponsorship We thank the Spanish Government (MAT2012-38429-C04-02) for support. A.B.B. acknowledges the award of a predoctoral FPI fellowship. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. Dr. S. Royo is thanked for support with some of the synthetic chemistry. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject boron es_ES
dc.subject fluorescent probes es_ES
dc.subject Neurological agents es_ES
dc.subject phosphorylation es_ES
dc.subject sensors es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201304475
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-02/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE EXPLOSIVOS Y GASES PELIGROSOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Barba Bon, A.; Costero Nieto, AM.; Gil Grau, S.; Harriman, A.; Sancenón Galarza, F. (2014). Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes. Chemistry - A European Journal. 20(21):6339-6347. https://doi.org/10.1002/chem.201304475 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201304475 es_ES
dc.description.upvformatpinicio 6339 es_ES
dc.description.upvformatpfin 6347 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 21 es_ES
dc.relation.senia 278958 es_ES
dc.identifier.eissn 1521-3765
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Gunderson, C. H., Lehmann, C. R., Sidell, F. R., & Jabbari, B. (1992). Nerve agents: A review. Neurology, 42(5), 946-946. doi:10.1212/wnl.42.5.946 es_ES
dc.description.references Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602 es_ES
dc.description.references Ashley, J. A., Lin, C.-H., Wirsching, P., & Janda, K. D. (1999). Nachweis chemischer Kampfstoffe anhand des Abbauprodukts Methylphosphonsäure. Angewandte Chemie, 111(12), 1909-1911. doi:10.1002/(sici)1521-3757(19990614)111:12<1909::aid-ange1909>3.0.co;2-j es_ES
dc.description.references Ashley, J. A., Lin, C.-H., Wirsching, P., & Janda, K. D. (1999). Monitoring Chemical Warfare Agents: A New Method for the Detection of Methylphosphonic Acid. Angewandte Chemie International Edition, 38(12), 1793-1795. doi:10.1002/(sici)1521-3773(19990614)38:12<1793::aid-anie1793>3.0.co;2-u es_ES
dc.description.references Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f es_ES
dc.description.references Bünzli, J.-C. G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 34(12), 1048. doi:10.1039/b406082m es_ES
dc.description.references Zhao, B., Chen, X.-Y., Cheng, P., Liao, D.-Z., Yan, S.-P., & Jiang, Z.-H. (2004). Coordination Polymers Containing 1D Channels as Selective Luminescent Probes. Journal of the American Chemical Society, 126(47), 15394-15395. doi:10.1021/ja047141b es_ES
dc.description.references Khan, M. A. K., Long, Y.-T., Schatte, G., & Kraatz, H.-B. (2007). Surface Studies of Aminoferrocene Derivatives on Gold:  Electrochemical Sensors for Chemical Warfare Agents. Analytical Chemistry, 79(7), 2877-2884. doi:10.1021/ac061981m es_ES
dc.description.references Shulga, O. V., & Palmer, C. (2006). Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte. Analytical and Bioanalytical Chemistry, 385(6), 1116-1123. doi:10.1007/s00216-006-0531-1 es_ES
dc.description.references Liu, G., & Lin, Y. (2006). Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow Injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents. Analytical Chemistry, 78(3), 835-843. doi:10.1021/ac051559q es_ES
dc.description.references Joshi, P. P., Merchant, S. A., Wang, Y., & Schmidtke, D. W. (2005). Amperometric Biosensors Based on Redox Polymer−Carbon Nanotube−Enzyme Composites. Analytical Chemistry, 77(10), 3183-3188. doi:10.1021/ac0484169 es_ES
dc.description.references He, W., Liu, Z., Du, X., Jiang, Y., & Xiao, D. (2008). Analytical application of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} as a QCM coating for DMMP detection. Talanta, 76(3), 698-702. doi:10.1016/j.talanta.2008.04.022 es_ES
dc.description.references Walker, J. P., Kimble, K. W., & Asher, S. A. (2007). Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme. Analytical and Bioanalytical Chemistry, 389(7-8), 2115-2124. doi:10.1007/s00216-007-1599-y es_ES
dc.description.references Walker, J. P., & Asher, S. A. (2005). Acetylcholinesterase-Based Organophosphate Nerve Agent Sensing Photonic Crystal. Analytical Chemistry, 77(6), 1596-1600. doi:10.1021/ac048562e es_ES
dc.description.references Zuo, G., Li, X., Li, P., Yang, T., Wang, Y., Cheng, Z., & Feng, S. (2006). Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor. Analytica Chimica Acta, 580(2), 123-127. doi:10.1016/j.aca.2006.07.071 es_ES
dc.description.references Karnati, C., Du, H., Ji, H.-F., Xu, X., Lvov, Y., Mulchandani, A., … Chen, W. (2007). Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors and Bioelectronics, 22(11), 2636-2642. doi:10.1016/j.bios.2006.10.027 es_ES
dc.description.references Aernecke, M. J., & Walt, D. R. (2009). Optical-fiber arrays for vapor sensing. Sensors and Actuators B: Chemical, 142(2), 464-469. doi:10.1016/j.snb.2009.06.054 es_ES
dc.description.references Burnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720 es_ES
dc.description.references Rakow, N. A., Sen, A., Janzen, M. C., Ponder, J. B., & Suslick, K. S. (2005). Molecular Recognition and Discrimination of Amines with a Colorimetric Array. Angewandte Chemie, 117(29), 4604-4608. doi:10.1002/ange.200500939 es_ES
dc.description.references Rakow, N. A., Sen, A., Janzen, M. C., Ponder, J. B., & Suslick, K. S. (2005). Molecular Recognition and Discrimination of Amines with a Colorimetric Array. Angewandte Chemie International Edition, 44(29), 4528-4532. doi:10.1002/anie.200500939 es_ES
dc.description.references Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a es_ES
dc.description.references Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie, 121(42), 7990-7992. doi:10.1002/ange.200902820 es_ES
dc.description.references Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie International Edition, 48(42), 7850-7852. doi:10.1002/anie.200902820 es_ES
dc.description.references Bencic-Nagale, S., Sternfeld, T., & Walt, D. R. (2006). Microbead Chemical Switches:  An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapors. Journal of the American Chemical Society, 128(15), 5041-5048. doi:10.1021/ja057057b es_ES
dc.description.references Xuan, W., Cao, Y., Zhou, J., & Wang, W. (2013). A FRET-based ratiometric fluorescent and colorimetric probe for the facile detection of organophosphonate nerve agent mimic DCP. Chemical Communications, 49(89), 10474. doi:10.1039/c3cc46095a es_ES
dc.description.references Han, S., Xue, Z., Wang, Z., & Wen, T. B. (2010). Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine–hydroxamate. Chemical Communications, 46(44), 8413. doi:10.1039/c0cc02881a es_ES
dc.description.references Clavaguera, S., Carella, A., Caillier, L., Celle, C., Pécaut, J., Lenfant, S., … Simonato, J.-P. (2010). Sub-ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanoribbon Field-Effect Transistors. Angewandte Chemie, 122(24), 4157-4160. doi:10.1002/ange.201000122 es_ES
dc.description.references Clavaguera, S., Carella, A., Caillier, L., Celle, C., Pécaut, J., Lenfant, S., … Simonato, J.-P. (2010). Sub-ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanoribbon Field-Effect Transistors. Angewandte Chemie International Edition, 49(24), 4063-4066. doi:10.1002/anie.201000122 es_ES
dc.description.references Zhang, S.-W., & Swager, T. M. (2003). Fluorescent Detection of Chemical Warfare Agents:  Functional Group Specific Ratiometric Chemosensors. Journal of the American Chemical Society, 125(12), 3420-3421. doi:10.1021/ja029265z es_ES
dc.description.references Wallace, K. J., Morey, J., Lynch, V. M., & Anslyn, E. V. (2005). Colorimetric detection of chemical warfare simulants. New Journal of Chemistry, 29(11), 1469. doi:10.1039/b506100h es_ES
dc.description.references Van Houten, K. A., Heath, D. C., & Pilato, R. S. (1998). Rapid Luminescent Detection of Phosphate Esters in Solution and the Gas Phase Using (dppe)Pt{S2C2(2-pyridyl)(CH2CH2OH)}. Journal of the American Chemical Society, 120(47), 12359-12360. doi:10.1021/ja982365d es_ES
dc.description.references Parker, D. (2000). Luminescent lanthanide sensors for pH, pO2 and selected anions. Coordination Chemistry Reviews, 205(1), 109-130. doi:10.1016/s0010-8545(00)00241-1 es_ES
dc.description.references Ilhan, F., Tyson, D. S., & Meador, M. A. (2004). Synthesis and Chemosensory Behavior of Anthracene Bisimide Derivatives. Chemistry of Materials, 16(16), 2978-2980. doi:10.1021/cm049508h es_ES
dc.description.references Costero, A. M., Parra, M., Gil, S., Gotor, R., Mancini, P. M. E., Martínez-Máñez, R., … Royo, S. (2010). Chromo-Fluorogenic Detection of Nerve-Agent Mimics Using Triggered Cyclization Reactions in Push-Pull Dyes. Chemistry - An Asian Journal, 5(7), 1573-1585. doi:10.1002/asia.201000058 es_ES
dc.description.references Royo, S., Gotor, R., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2012). Aryl carbinols as nerve agent probes. Influence of the conjugation on the sensing properties. New Journal of Chemistry, 36(7), 1485. doi:10.1039/c2nj40104e es_ES
dc.description.references Martí, A., Costero, A. M., Gaviña, P., Gil, S., Parra, M., Brotons-Gisbert, M., & Sánchez-Royo, J. F. (2013). Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. European Journal of Organic Chemistry, 2013(22), 4770-4779. doi:10.1002/ejoc.201300339 es_ES
dc.description.references Loudet, A., & Burgess, K. (2007). BODIPY Dyes and Their Derivatives:  Syntheses and Spectroscopic Properties. Chemical Reviews, 107(11), 4891-4932. doi:10.1021/cr078381n es_ES
dc.description.references Ulrich, G., Ziessel, R., & Harriman, A. (2008). Die vielseitige Chemie von Bodipy-Fluoreszenzfarbstoffen. Angewandte Chemie, 120(7), 1202-1219. doi:10.1002/ange.200702070 es_ES
dc.description.references Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070 es_ES
dc.description.references Wu, X., Wu, Z., & Han, S. (2011). Chromogenic and fluorogenic detection of a nerve agent simulant with a rhodamine-deoxylactam based sensor. Chemical Communications, 47(41), 11468. doi:10.1039/c1cc15250e es_ES
dc.description.references Wu, Z., Wu, X., Yang, Y., Wen, T., & Han, S. (2012). A rhodamine-deoxylactam based sensor for chromo-fluorogenic detection of nerve agent simulant. Bioorganic & Medicinal Chemistry Letters, 22(20), 6358-6361. doi:10.1016/j.bmcl.2012.08.077 es_ES
dc.description.references Alamiry, M. A. H., Harriman, A., Mallon, L. J., Ulrich, G., & Ziessel, R. (2008). Energy- and Charge-Transfer Processes in a Perylene–BODIPY–Pyridine Tripartite Array. European Journal of Organic Chemistry, 2008(16), 2774-2782. doi:10.1002/ejoc.200800159 es_ES
dc.description.references Harriman, A., Mallon, L. J., Ulrich, G., & Ziessel, R. (2007). Rapid Intersystem Crossing in Closely-Spaced but Orthogonal Molecular Dyads. ChemPhysChem, 8(8), 1207-1214. doi:10.1002/cphc.200700060 es_ES
dc.description.references Saki, N., Dinc, T., & Akkaya, E. U. (2006). Excimer emission and energy transfer in cofacial boradiazaindacene (BODIPY) dimers built on a xanthene scaffold. Tetrahedron, 62(11), 2721-2725. doi:10.1016/j.tet.2005.12.021 es_ES
dc.description.references Baruah, M., Qin, W., Basarić, N., De Borggraeve, W. M., & Boens, N. (2005). BODIPY-Based Hydroxyaryl Derivatives as Fluorescent pH Probes. The Journal of Organic Chemistry, 70(10), 4152-4157. doi:10.1021/jo0503714 es_ES
dc.description.references Ikawa, Y., Moriyama, S., & Furuta, H. (2008). Facile syntheses of BODIPY derivatives for fluorescent labeling of the 3′ and 5′ ends of RNAs. Analytical Biochemistry, 378(2), 166-170. doi:10.1016/j.ab.2008.03.054 es_ES
dc.description.references Qin, W., Baruah, M., De Borggraeve, W. M., & Boens, N. (2006). Photophysical properties of an on/off fluorescent pH indicator excitable with visible light based on a borondipyrromethene-linked phenol. Journal of Photochemistry and Photobiology A: Chemistry, 183(1-2), 190-197. doi:10.1016/j.jphotochem.2006.03.015 es_ES
dc.description.references Peng, X., Du, J., Fan, J., Wang, J., Wu, Y., Zhao, J., … Xu, T. (2007). A Selective Fluorescent Sensor for Imaging Cd2+in Living Cells. Journal of the American Chemical Society, 129(6), 1500-1501. doi:10.1021/ja0643319 es_ES
dc.description.references (s. f.). doi:10.1021/jp073547 es_ES
dc.description.references Yin, Z., Tam, A. Y.-Y., Wong, K. M.-C., Tao, C.-H., Li, B., Poon, C.-T., … Yam, V. W.-W. (2012). Functionalized BODIPY with various sensory units – a versatile colorimetric and luminescent probe for pH and ions. Dalton Transactions, 41(37), 11340. doi:10.1039/c2dt30446e es_ES
dc.description.references Cheng, T., Wang, T., Zhu, W., Chen, X., Yang, Y., Xu, Y., & Qian, X. (2011). Red-Emission Fluorescent Probe Sensing Cadmium and Pyrophosphate Selectively in Aqueous Solution. Organic Letters, 13(14), 3656-3659. doi:10.1021/ol201305d es_ES
dc.description.references Cheng, T., Wang, T., Zhu, W., Yang, Y., Zeng, B., Xu, Y., & Qian, X. (2011). Modulating the selectivity of near-IR fluorescent probes toward various metal ions by judicious choice of aqueous buffer solutions. Chemical Communications, 47(13), 3915. doi:10.1039/c0cc05554a es_ES
dc.description.references Zhu, M., Yuan, M., Liu, X., Xu, J., Lv, J., Huang, C., … Zhu, D. (2008). Visible Near-Infrared Chemosensor for Mercury Ion. Organic Letters, 10(7), 1481-1484. doi:10.1021/ol800197t es_ES
dc.description.references Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b es_ES
dc.description.references Casey, K. G., & Quitevis, E. L. (1988). Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols. The Journal of Physical Chemistry, 92(23), 6590-6594. doi:10.1021/j100334a023 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem