- -

Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes

Mostrar el registro completo del ítem

Barba Bon, A.; Costero Nieto, AM.; Gil Grau, S.; Harriman, A.; Sancenón Galarza, F. (2014). Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes. Chemistry - A European Journal. 20(21):6339-6347. https://doi.org/10.1002/chem.201304475

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60099

Ficheros en el ítem

Metadatos del ítem

Título: Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes
Autor: Barba Bon, Andrea Costero Nieto, Ana María Gil Grau, Salvador Harriman, Anthony Sancenón Galarza, Félix
Entidad UPV: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
Two chromo-fluorogenic probes, each based on the boron dipyrromethene core, have been developed for the detection of nerve-agent mimics. These chemosensors display both a color change and a significant enhancement of ...[+]
Palabras clave: boron , fluorescent probes , Neurological agents , phosphorylation , sensors
Derechos de uso: Cerrado
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 ) (eissn: 1521-3765 )
DOI: 10.1002/chem.201304475
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/chem.201304475
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-02/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE EXPLOSIVOS Y GASES PELIGROSOS/
Agradecimientos:
We thank the Spanish Government (MAT2012-38429-C04-02) for support. A.B.B. acknowledges the award of a predoctoral FPI fellowship. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. ...[+]
Tipo: Artículo

References

Gunderson, C. H., Lehmann, C. R., Sidell, F. R., & Jabbari, B. (1992). Nerve agents: A review. Neurology, 42(5), 946-946. doi:10.1212/wnl.42.5.946

Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602

Ashley, J. A., Lin, C.-H., Wirsching, P., & Janda, K. D. (1999). Nachweis chemischer Kampfstoffe anhand des Abbauprodukts Methylphosphonsäure. Angewandte Chemie, 111(12), 1909-1911. doi:10.1002/(sici)1521-3757(19990614)111:12<1909::aid-ange1909>3.0.co;2-j [+]
Gunderson, C. H., Lehmann, C. R., Sidell, F. R., & Jabbari, B. (1992). Nerve agents: A review. Neurology, 42(5), 946-946. doi:10.1212/wnl.42.5.946

Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602

Ashley, J. A., Lin, C.-H., Wirsching, P., & Janda, K. D. (1999). Nachweis chemischer Kampfstoffe anhand des Abbauprodukts Methylphosphonsäure. Angewandte Chemie, 111(12), 1909-1911. doi:10.1002/(sici)1521-3757(19990614)111:12<1909::aid-ange1909>3.0.co;2-j

Ashley, J. A., Lin, C.-H., Wirsching, P., & Janda, K. D. (1999). Monitoring Chemical Warfare Agents: A New Method for the Detection of Methylphosphonic Acid. Angewandte Chemie International Edition, 38(12), 1793-1795. doi:10.1002/(sici)1521-3773(19990614)38:12<1793::aid-anie1793>3.0.co;2-u

Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f

Bünzli, J.-C. G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 34(12), 1048. doi:10.1039/b406082m

Zhao, B., Chen, X.-Y., Cheng, P., Liao, D.-Z., Yan, S.-P., & Jiang, Z.-H. (2004). Coordination Polymers Containing 1D Channels as Selective Luminescent Probes. Journal of the American Chemical Society, 126(47), 15394-15395. doi:10.1021/ja047141b

Khan, M. A. K., Long, Y.-T., Schatte, G., & Kraatz, H.-B. (2007). Surface Studies of Aminoferrocene Derivatives on Gold:  Electrochemical Sensors for Chemical Warfare Agents. Analytical Chemistry, 79(7), 2877-2884. doi:10.1021/ac061981m

Shulga, O. V., & Palmer, C. (2006). Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte. Analytical and Bioanalytical Chemistry, 385(6), 1116-1123. doi:10.1007/s00216-006-0531-1

Liu, G., & Lin, Y. (2006). Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow Injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents. Analytical Chemistry, 78(3), 835-843. doi:10.1021/ac051559q

Joshi, P. P., Merchant, S. A., Wang, Y., & Schmidtke, D. W. (2005). Amperometric Biosensors Based on Redox Polymer−Carbon Nanotube−Enzyme Composites. Analytical Chemistry, 77(10), 3183-3188. doi:10.1021/ac0484169

He, W., Liu, Z., Du, X., Jiang, Y., & Xiao, D. (2008). Analytical application of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} as a QCM coating for DMMP detection. Talanta, 76(3), 698-702. doi:10.1016/j.talanta.2008.04.022

Walker, J. P., Kimble, K. W., & Asher, S. A. (2007). Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme. Analytical and Bioanalytical Chemistry, 389(7-8), 2115-2124. doi:10.1007/s00216-007-1599-y

Walker, J. P., & Asher, S. A. (2005). Acetylcholinesterase-Based Organophosphate Nerve Agent Sensing Photonic Crystal. Analytical Chemistry, 77(6), 1596-1600. doi:10.1021/ac048562e

Zuo, G., Li, X., Li, P., Yang, T., Wang, Y., Cheng, Z., & Feng, S. (2006). Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor. Analytica Chimica Acta, 580(2), 123-127. doi:10.1016/j.aca.2006.07.071

Karnati, C., Du, H., Ji, H.-F., Xu, X., Lvov, Y., Mulchandani, A., … Chen, W. (2007). Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors and Bioelectronics, 22(11), 2636-2642. doi:10.1016/j.bios.2006.10.027

Aernecke, M. J., & Walt, D. R. (2009). Optical-fiber arrays for vapor sensing. Sensors and Actuators B: Chemical, 142(2), 464-469. doi:10.1016/j.snb.2009.06.054

Burnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720

Rakow, N. A., Sen, A., Janzen, M. C., Ponder, J. B., & Suslick, K. S. (2005). Molecular Recognition and Discrimination of Amines with a Colorimetric Array. Angewandte Chemie, 117(29), 4604-4608. doi:10.1002/ange.200500939

Rakow, N. A., Sen, A., Janzen, M. C., Ponder, J. B., & Suslick, K. S. (2005). Molecular Recognition and Discrimination of Amines with a Colorimetric Array. Angewandte Chemie International Edition, 44(29), 4528-4532. doi:10.1002/anie.200500939

Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a

Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie, 121(42), 7990-7992. doi:10.1002/ange.200902820

Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie International Edition, 48(42), 7850-7852. doi:10.1002/anie.200902820

Bencic-Nagale, S., Sternfeld, T., & Walt, D. R. (2006). Microbead Chemical Switches:  An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapors. Journal of the American Chemical Society, 128(15), 5041-5048. doi:10.1021/ja057057b

Xuan, W., Cao, Y., Zhou, J., & Wang, W. (2013). A FRET-based ratiometric fluorescent and colorimetric probe for the facile detection of organophosphonate nerve agent mimic DCP. Chemical Communications, 49(89), 10474. doi:10.1039/c3cc46095a

Han, S., Xue, Z., Wang, Z., & Wen, T. B. (2010). Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine–hydroxamate. Chemical Communications, 46(44), 8413. doi:10.1039/c0cc02881a

Clavaguera, S., Carella, A., Caillier, L., Celle, C., Pécaut, J., Lenfant, S., … Simonato, J.-P. (2010). Sub-ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanoribbon Field-Effect Transistors. Angewandte Chemie, 122(24), 4157-4160. doi:10.1002/ange.201000122

Clavaguera, S., Carella, A., Caillier, L., Celle, C., Pécaut, J., Lenfant, S., … Simonato, J.-P. (2010). Sub-ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanoribbon Field-Effect Transistors. Angewandte Chemie International Edition, 49(24), 4063-4066. doi:10.1002/anie.201000122

Zhang, S.-W., & Swager, T. M. (2003). Fluorescent Detection of Chemical Warfare Agents:  Functional Group Specific Ratiometric Chemosensors. Journal of the American Chemical Society, 125(12), 3420-3421. doi:10.1021/ja029265z

Wallace, K. J., Morey, J., Lynch, V. M., & Anslyn, E. V. (2005). Colorimetric detection of chemical warfare simulants. New Journal of Chemistry, 29(11), 1469. doi:10.1039/b506100h

Van Houten, K. A., Heath, D. C., & Pilato, R. S. (1998). Rapid Luminescent Detection of Phosphate Esters in Solution and the Gas Phase Using (dppe)Pt{S2C2(2-pyridyl)(CH2CH2OH)}. Journal of the American Chemical Society, 120(47), 12359-12360. doi:10.1021/ja982365d

Parker, D. (2000). Luminescent lanthanide sensors for pH, pO2 and selected anions. Coordination Chemistry Reviews, 205(1), 109-130. doi:10.1016/s0010-8545(00)00241-1

Ilhan, F., Tyson, D. S., & Meador, M. A. (2004). Synthesis and Chemosensory Behavior of Anthracene Bisimide Derivatives. Chemistry of Materials, 16(16), 2978-2980. doi:10.1021/cm049508h

Costero, A. M., Parra, M., Gil, S., Gotor, R., Mancini, P. M. E., Martínez-Máñez, R., … Royo, S. (2010). Chromo-Fluorogenic Detection of Nerve-Agent Mimics Using Triggered Cyclization Reactions in Push-Pull Dyes. Chemistry - An Asian Journal, 5(7), 1573-1585. doi:10.1002/asia.201000058

Royo, S., Gotor, R., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2012). Aryl carbinols as nerve agent probes. Influence of the conjugation on the sensing properties. New Journal of Chemistry, 36(7), 1485. doi:10.1039/c2nj40104e

Martí, A., Costero, A. M., Gaviña, P., Gil, S., Parra, M., Brotons-Gisbert, M., & Sánchez-Royo, J. F. (2013). Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. European Journal of Organic Chemistry, 2013(22), 4770-4779. doi:10.1002/ejoc.201300339

Loudet, A., & Burgess, K. (2007). BODIPY Dyes and Their Derivatives:  Syntheses and Spectroscopic Properties. Chemical Reviews, 107(11), 4891-4932. doi:10.1021/cr078381n

Ulrich, G., Ziessel, R., & Harriman, A. (2008). Die vielseitige Chemie von Bodipy-Fluoreszenzfarbstoffen. Angewandte Chemie, 120(7), 1202-1219. doi:10.1002/ange.200702070

Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070

Wu, X., Wu, Z., & Han, S. (2011). Chromogenic and fluorogenic detection of a nerve agent simulant with a rhodamine-deoxylactam based sensor. Chemical Communications, 47(41), 11468. doi:10.1039/c1cc15250e

Wu, Z., Wu, X., Yang, Y., Wen, T., & Han, S. (2012). A rhodamine-deoxylactam based sensor for chromo-fluorogenic detection of nerve agent simulant. Bioorganic & Medicinal Chemistry Letters, 22(20), 6358-6361. doi:10.1016/j.bmcl.2012.08.077

Alamiry, M. A. H., Harriman, A., Mallon, L. J., Ulrich, G., & Ziessel, R. (2008). Energy- and Charge-Transfer Processes in a Perylene–BODIPY–Pyridine Tripartite Array. European Journal of Organic Chemistry, 2008(16), 2774-2782. doi:10.1002/ejoc.200800159

Harriman, A., Mallon, L. J., Ulrich, G., & Ziessel, R. (2007). Rapid Intersystem Crossing in Closely-Spaced but Orthogonal Molecular Dyads. ChemPhysChem, 8(8), 1207-1214. doi:10.1002/cphc.200700060

Saki, N., Dinc, T., & Akkaya, E. U. (2006). Excimer emission and energy transfer in cofacial boradiazaindacene (BODIPY) dimers built on a xanthene scaffold. Tetrahedron, 62(11), 2721-2725. doi:10.1016/j.tet.2005.12.021

Baruah, M., Qin, W., Basarić, N., De Borggraeve, W. M., & Boens, N. (2005). BODIPY-Based Hydroxyaryl Derivatives as Fluorescent pH Probes. The Journal of Organic Chemistry, 70(10), 4152-4157. doi:10.1021/jo0503714

Ikawa, Y., Moriyama, S., & Furuta, H. (2008). Facile syntheses of BODIPY derivatives for fluorescent labeling of the 3′ and 5′ ends of RNAs. Analytical Biochemistry, 378(2), 166-170. doi:10.1016/j.ab.2008.03.054

Qin, W., Baruah, M., De Borggraeve, W. M., & Boens, N. (2006). Photophysical properties of an on/off fluorescent pH indicator excitable with visible light based on a borondipyrromethene-linked phenol. Journal of Photochemistry and Photobiology A: Chemistry, 183(1-2), 190-197. doi:10.1016/j.jphotochem.2006.03.015

Peng, X., Du, J., Fan, J., Wang, J., Wu, Y., Zhao, J., … Xu, T. (2007). A Selective Fluorescent Sensor for Imaging Cd2+in Living Cells. Journal of the American Chemical Society, 129(6), 1500-1501. doi:10.1021/ja0643319

(s. f.). doi:10.1021/jp073547

Yin, Z., Tam, A. Y.-Y., Wong, K. M.-C., Tao, C.-H., Li, B., Poon, C.-T., … Yam, V. W.-W. (2012). Functionalized BODIPY with various sensory units – a versatile colorimetric and luminescent probe for pH and ions. Dalton Transactions, 41(37), 11340. doi:10.1039/c2dt30446e

Cheng, T., Wang, T., Zhu, W., Chen, X., Yang, Y., Xu, Y., & Qian, X. (2011). Red-Emission Fluorescent Probe Sensing Cadmium and Pyrophosphate Selectively in Aqueous Solution. Organic Letters, 13(14), 3656-3659. doi:10.1021/ol201305d

Cheng, T., Wang, T., Zhu, W., Yang, Y., Zeng, B., Xu, Y., & Qian, X. (2011). Modulating the selectivity of near-IR fluorescent probes toward various metal ions by judicious choice of aqueous buffer solutions. Chemical Communications, 47(13), 3915. doi:10.1039/c0cc05554a

Zhu, M., Yuan, M., Liu, X., Xu, J., Lv, J., Huang, C., … Zhu, D. (2008). Visible Near-Infrared Chemosensor for Mercury Ion. Organic Letters, 10(7), 1481-1484. doi:10.1021/ol800197t

Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b

Casey, K. G., & Quitevis, E. L. (1988). Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols. The Journal of Physical Chemistry, 92(23), 6590-6594. doi:10.1021/j100334a023

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem