Mostrar el registro sencillo del ítem
dc.contributor.author | Lavorato, Cristina | es_ES |
dc.contributor.author | Primo Arnau, Ana María | es_ES |
dc.contributor.author | Molinari, Raffaele | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2016-01-21T10:20:59Z | |
dc.date.issued | 2014-01-03 | |
dc.identifier.issn | 0947-6539 | |
dc.identifier.uri | http://hdl.handle.net/10251/60101 | |
dc.description.abstract | There is much current interest in developing graphene-based materials as photocatalysts, particularly in the field of solar fuels and the photocatalytic generation of hydrogen. Graphene is a versatile material allowing different modification strategies to improve its activity. Thus, in the present manuscript we report that, in contrast to the lack of photocatalytic activity of undoped graphene, nitrogen doping introduces UV- and visible-light activity for hydrogen evolution; the efficiency of the material depends on the preparation conditions. The N-doped graphene is obtained by pyrolysis under an inert atmosphere of natural chitosan, which is considered a biomass waste, followed by ultrasound exfoliation, without the need of oxidation and reconstitution. The main parameter controlling the residual amount of nitrogen and the resulting photocatalytic activity is the pyrolysis temperature that produces an optimal material when the thermal treatment is carried out at 900 degrees C. Due to the fact that, in contrast to graphene oxide, N-doped graphene exhibits an almost neutral absorption spectrum, the material exhibits photocatalytic activity upon UV- (355nm) and visible-light (532nm) irradiation, and is able to generate hydrogen upon simulated sunlight illumination. | es_ES |
dc.description.sponsorship | A.P. is grateful to the Spanish National Research Council for a JAE.Doc research associate contract. C.L. thanks the European Commission, the European Social Fund, and the Regione Calabria for financial support of her Ph.D. fellowship and funding for her stay in Valencia. H.G. thanks the Ministry of Economy and Competitiveness (Severo Ochoa and CTQ-3231315) and the Generalidad Valenciana (Prometeo 2012/013) for financial support. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | doping | es_ES |
dc.subject | graphene | es_ES |
dc.subject | hydrogen generation | es_ES |
dc.subject | photocatalysis | es_ES |
dc.subject | semiconductors | es_ES |
dc.subject | solar fuels | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/chem.201303689 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Lavorato, C.; Primo Arnau, AM.; Molinari, R.; García Gómez, H. (2014). N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures. Chemistry - A European Journal. 20(1):187-194. doi:10.1002/chem.201303689 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/chem.201303689 | es_ES |
dc.description.upvformatpinicio | 187 | es_ES |
dc.description.upvformatpfin | 194 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 285612 | es_ES |
dc.identifier.eissn | 1521-3765 | |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Regione Calabria | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | Tran, P. D., Wong, L. H., Barber, J., & Loo, J. S. C. (2012). Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science, 5(3), 5902. doi:10.1039/c2ee02849b | es_ES |
dc.description.references | Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235-246. doi:10.1038/nnano.2013.46 | es_ES |
dc.description.references | Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274 | es_ES |
dc.description.references | Latorre-Sánchez, M., Lavorato, C., Puche, M., Fornés, V., Molinari, R., & Garcia, H. (2012). Visible-Light Photocatalytic Hydrogen Generation by Using Dye-Sensitized Graphene Oxide as a Photocatalyst. Chemistry - A European Journal, 18(52), 16774-16783. doi:10.1002/chem.201202372 | es_ES |
dc.description.references | Peng, T., Li, K., Zeng, P., Zhang, Q., & Zhang, X. (2012). Enhanced Photocatalytic Hydrogen Production over Graphene Oxide–Cadmium Sulfide Nanocomposite under Visible Light Irradiation. The Journal of Physical Chemistry C, 116(43), 22720-22726. doi:10.1021/jp306947d | es_ES |
dc.description.references | An, X., & Yu, J. C. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426. doi:10.1039/c1ra00382h | es_ES |
dc.description.references | Han, L., Wang, P., & Dong, S. (2012). Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst. Nanoscale, 4(19), 5814. doi:10.1039/c2nr31699d | es_ES |
dc.description.references | Ng, Y. H., Lightcap, I. V., Goodwin, K., Matsumura, M., & Kamat, P. V. (2010). To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films? The Journal of Physical Chemistry Letters, 1(15), 2222-2227. doi:10.1021/jz100728z | es_ES |
dc.description.references | Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g | es_ES |
dc.description.references | Boukhvalov, D. W., Dreyer, D. R., Bielawski, C. W., & Son, Y. (2012). A Computational Investigation of the Catalytic Properties of Graphene Oxide: Exploring Mechanisms by using DFT Methods. ChemCatChem, 4(11), 1844-1849. doi:10.1002/cctc.201200210 | es_ES |
dc.description.references | Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102j | es_ES |
dc.description.references | Jia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). C–H oxidation using graphite oxide. Tetrahedron, 67(24), 4431-4434. doi:10.1016/j.tet.2011.02.065 | es_ES |
dc.description.references | Zaleska, A. (2008). Doped-TiO2: A Review. Recent Patents on Engineering, 2(3), 157-164. doi:10.2174/187221208786306289 | es_ES |
dc.description.references | Sathish, M., Viswanathan, B., Viswanath, R. P., & Gopinath, C. S. (2005). Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2Nanocatalyst. Chemistry of Materials, 17(25), 6349-6353. doi:10.1021/cm052047v | es_ES |
dc.description.references | Cong, Y., Zhang, J., Chen, F., & Anpo, M. (2007). Synthesis and Characterization of Nitrogen-Doped TiO2Nanophotocatalyst with High Visible Light Activity. The Journal of Physical Chemistry C, 111(19), 6976-6982. doi:10.1021/jp0685030 | es_ES |
dc.description.references | Ballesteros-Garrido, R., de Miguel, M., Doménech-Carbó, A., Alvaro, M., & Garcia, H. (2013). Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene. Chemical Communications, 49(31), 3236. doi:10.1039/c3cc39145k | es_ES |
dc.description.references | Qu, L., Liu, Y., Baek, J.-B., & Dai, L. (2010). Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 4(3), 1321-1326. doi:10.1021/nn901850u | es_ES |
dc.description.references | Malig, J., Jux, N., Kiessling, D., Cid, J.-J., Vázquez, P., Torres, T., & Guldi, D. M. (2011). Auf dem Weg zu elektronisch abstimmbarem Graphen/Phthalocyanin-PPV-Hybridsystemen. Angewandte Chemie, 123(15), 3623-3627. doi:10.1002/ange.201003364 | es_ES |
dc.description.references | Malig, J., Jux, N., Kiessling, D., Cid, J.-J., Vázquez, P., Torres, T., & Guldi, D. M. (2011). Towards Tunable Graphene/Phthalocyanine-PPV Hybrid Systems. Angewandte Chemie International Edition, 50(15), 3561-3565. doi:10.1002/anie.201003364 | es_ES |
dc.description.references | Malig, J., Romero-Nieto, C., Jux, N., & Guldi, D. M. (2011). Integrating Water-Soluble Graphene into Porphyrin Nanohybrids. Advanced Materials, 24(6), 800-805. doi:10.1002/adma.201103697 | es_ES |
dc.description.references | Costa, R. D., Malig, J., Brenner, W., Jux, N., & Guldi, D. M. (2013). Electron Accepting Porphycenes on Graphene. Advanced Materials, 25(18), 2600-2605. doi:10.1002/adma.201300231 | es_ES |
dc.description.references | Ragoussi, M.-E., Malig, J., Katsukis, G., Butz, B., Spiecker, E., de la Torre, G., … Guldi, D. M. (2012). Linking Photo- and Redoxactive Phthalocyanines Covalently to Graphene. Angewandte Chemie, 124(26), 6527-6531. doi:10.1002/ange.201201452 | es_ES |
dc.description.references | Ragoussi, M.-E., Malig, J., Katsukis, G., Butz, B., Spiecker, E., de la Torre, G., … Guldi, D. M. (2012). Linking Photo- and Redoxactive Phthalocyanines Covalently to Graphene. Angewandte Chemie International Edition, 51(26), 6421-6425. doi:10.1002/anie.201201452 | es_ES |
dc.description.references | Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g | es_ES |
dc.description.references | Usachov, D., Vilkov, O., Grüneis, A., Haberer, D., Fedorov, A., Adamchuk, V. K., … Vyalikh, D. V. (2011). Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Letters, 11(12), 5401-5407. doi:10.1021/nl2031037 | es_ES |
dc.description.references | Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., & Yu, G. (2009). Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 9(5), 1752-1758. doi:10.1021/nl803279t | es_ES |
dc.description.references | Rani, P., & Jindal, V. K. (2013). Designing band gap of graphene by B and N dopant atoms. RSC Adv., 3(3), 802-812. doi:10.1039/c2ra22664b | es_ES |
dc.description.references | Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2012). Design of graphene-based TiO2 photocatalysts—a review. Environmental Science and Pollution Research, 19(9), 3676-3687. doi:10.1007/s11356-012-0939-4 | es_ES |
dc.description.references | Min, S., & Lu, G. (2011). Dye-Sensitized Reduced Graphene Oxide Photocatalysts for Highly Efficient Visible-Light-Driven Water Reduction. The Journal of Physical Chemistry C, 115(28), 13938-13945. doi:10.1021/jp203750z | es_ES |
dc.description.references | Mou, Z., Dong, Y., Li, S., Du, Y., Wang, X., Yang, P., & Wang, S. (2011). Eosin Y functionalized graphene for photocatalytic hydrogen production from water. International Journal of Hydrogen Energy, 36(15), 8885-8893. doi:10.1016/j.ijhydene.2011.05.003 | es_ES |
dc.description.references | Xiang, Q., Yu, J., & Jaroniec, M. (2011). Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale, 3(9), 3670. doi:10.1039/c1nr10610d | es_ES |
dc.description.references | Jia, L., Wang, D.-H., Huang, Y.-X., Xu, A.-W., & Yu, H.-Q. (2011). Highly Durable N-Doped Graphene/CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution from Water under Visible Light Irradiation. The Journal of Physical Chemistry C, 115(23), 11466-11473. doi:10.1021/jp2023617 | es_ES |
dc.description.references | Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., … Antonietti, M. (2008). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76-80. doi:10.1038/nmat2317 | es_ES |
dc.description.references | Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie, 125(45), 12029-12032. doi:10.1002/ange.201304505 | es_ES |
dc.description.references | Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 | es_ES |
dc.description.references | Primo, A., Forneli, A., Corma, A., & García, H. (2012). From Biomass Wastes to Highly Efficient CO2Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 5(11), 2207-2214. doi:10.1002/cssc.201200366 | es_ES |
dc.description.references | Valentin, R., Molvinger, K., Quignard, F., & Brunel, D. (2003). Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New Journal of Chemistry, 27(12), 1690. doi:10.1039/b310109f | es_ES |
dc.description.references | Bellamkonda, R., Ranieri, J. P., Bouche, N., & Aebischer, P. (1995). Hydrogel-based three-dimensional matrix for neural cells. Journal of Biomedical Materials Research, 29(5), 663-671. doi:10.1002/jbm.820290514 | es_ES |
dc.description.references | Trieu, H., & Qutubuddin, S. (1995). Poly(vinyl alcohol) hydrogels: 2. Effects of processing parameters on structure and properties. Polymer, 36(13), 2531-2539. doi:10.1016/0032-3861(95)91198-g | es_ES |
dc.description.references | Dillon, G. P., Xiaojun Yu, Sridharan, A., Ranieri, J. P., & Bellamkonda, R. V. (1998). The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. Journal of Biomaterials Science, Polymer Edition, 9(10), 1049-1069. doi:10.1163/156856298x00325 | es_ES |
dc.description.references | Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., … Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706-710. doi:10.1038/nature07719 | es_ES |
dc.description.references | Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano, 2(7), 1487-1491. doi:10.1021/nn800251f | es_ES |
dc.description.references | Krishnamoorthy, K., Mohan, R., & Kim, S.-J. (2011). Graphene oxide as a photocatalytic material. Applied Physics Letters, 98(24), 244101. doi:10.1063/1.3599453 | es_ES |
dc.description.references | Zhang, X.-Y., Li, H.-P., Cui, X.-L., & Lin, Y. (2010). Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. Journal of Materials Chemistry, 20(14), 2801. doi:10.1039/b917240h | es_ES |
dc.description.references | Lightcap, I. V., Kosel, T. H., & Kamat, P. V. (2010). Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano Letters, 10(2), 577-583. doi:10.1021/nl9035109 | es_ES |