- -

N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lavorato, Cristina es_ES
dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author Molinari, Raffaele es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-01-21T10:20:59Z
dc.date.issued 2014-01-03
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/60101
dc.description.abstract There is much current interest in developing graphene-based materials as photocatalysts, particularly in the field of solar fuels and the photocatalytic generation of hydrogen. Graphene is a versatile material allowing different modification strategies to improve its activity. Thus, in the present manuscript we report that, in contrast to the lack of photocatalytic activity of undoped graphene, nitrogen doping introduces UV- and visible-light activity for hydrogen evolution; the efficiency of the material depends on the preparation conditions. The N-doped graphene is obtained by pyrolysis under an inert atmosphere of natural chitosan, which is considered a biomass waste, followed by ultrasound exfoliation, without the need of oxidation and reconstitution. The main parameter controlling the residual amount of nitrogen and the resulting photocatalytic activity is the pyrolysis temperature that produces an optimal material when the thermal treatment is carried out at 900 degrees C. Due to the fact that, in contrast to graphene oxide, N-doped graphene exhibits an almost neutral absorption spectrum, the material exhibits photocatalytic activity upon UV- (355nm) and visible-light (532nm) irradiation, and is able to generate hydrogen upon simulated sunlight illumination. es_ES
dc.description.sponsorship A.P. is grateful to the Spanish National Research Council for a JAE.Doc research associate contract. C.L. thanks the European Commission, the European Social Fund, and the Regione Calabria for financial support of her Ph.D. fellowship and funding for her stay in Valencia. H.G. thanks the Ministry of Economy and Competitiveness (Severo Ochoa and CTQ-3231315) and the Generalidad Valenciana (Prometeo 2012/013) for financial support. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject doping es_ES
dc.subject graphene es_ES
dc.subject hydrogen generation es_ES
dc.subject photocatalysis es_ES
dc.subject semiconductors es_ES
dc.subject solar fuels es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201303689
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Lavorato, C.; Primo Arnau, AM.; Molinari, R.; García Gómez, H. (2014). N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures. Chemistry - A European Journal. 20(1):187-194. doi:10.1002/chem.201303689 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201303689 es_ES
dc.description.upvformatpinicio 187 es_ES
dc.description.upvformatpfin 194 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 285612 es_ES
dc.identifier.eissn 1521-3765
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Regione Calabria es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Tran, P. D., Wong, L. H., Barber, J., & Loo, J. S. C. (2012). Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science, 5(3), 5902. doi:10.1039/c2ee02849b es_ES
dc.description.references Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235-246. doi:10.1038/nnano.2013.46 es_ES
dc.description.references Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274 es_ES
dc.description.references Latorre-Sánchez, M., Lavorato, C., Puche, M., Fornés, V., Molinari, R., & Garcia, H. (2012). Visible-Light Photocatalytic Hydrogen Generation by Using Dye-Sensitized Graphene Oxide as a Photocatalyst. Chemistry - A European Journal, 18(52), 16774-16783. doi:10.1002/chem.201202372 es_ES
dc.description.references Peng, T., Li, K., Zeng, P., Zhang, Q., & Zhang, X. (2012). Enhanced Photocatalytic Hydrogen Production over Graphene Oxide–Cadmium Sulfide Nanocomposite under Visible Light Irradiation. The Journal of Physical Chemistry C, 116(43), 22720-22726. doi:10.1021/jp306947d es_ES
dc.description.references An, X., & Yu, J. C. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426. doi:10.1039/c1ra00382h es_ES
dc.description.references Han, L., Wang, P., & Dong, S. (2012). Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst. Nanoscale, 4(19), 5814. doi:10.1039/c2nr31699d es_ES
dc.description.references Ng, Y. H., Lightcap, I. V., Goodwin, K., Matsumura, M., & Kamat, P. V. (2010). To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films? The Journal of Physical Chemistry Letters, 1(15), 2222-2227. doi:10.1021/jz100728z es_ES
dc.description.references Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g es_ES
dc.description.references Boukhvalov, D. W., Dreyer, D. R., Bielawski, C. W., & Son, Y. (2012). A Computational Investigation of the Catalytic Properties of Graphene Oxide: Exploring Mechanisms by using DFT Methods. ChemCatChem, 4(11), 1844-1849. doi:10.1002/cctc.201200210 es_ES
dc.description.references Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102j es_ES
dc.description.references Jia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). C–H oxidation using graphite oxide. Tetrahedron, 67(24), 4431-4434. doi:10.1016/j.tet.2011.02.065 es_ES
dc.description.references Zaleska, A. (2008). Doped-TiO2: A Review. Recent Patents on Engineering, 2(3), 157-164. doi:10.2174/187221208786306289 es_ES
dc.description.references Sathish, M., Viswanathan, B., Viswanath, R. P., & Gopinath, C. S. (2005). Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2Nanocatalyst. Chemistry of Materials, 17(25), 6349-6353. doi:10.1021/cm052047v es_ES
dc.description.references Cong, Y., Zhang, J., Chen, F., & Anpo, M. (2007). Synthesis and Characterization of Nitrogen-Doped TiO2Nanophotocatalyst with High Visible Light Activity. The Journal of Physical Chemistry C, 111(19), 6976-6982. doi:10.1021/jp0685030 es_ES
dc.description.references Ballesteros-Garrido, R., de Miguel, M., Doménech-Carbó, A., Alvaro, M., & Garcia, H. (2013). Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene. Chemical Communications, 49(31), 3236. doi:10.1039/c3cc39145k es_ES
dc.description.references Qu, L., Liu, Y., Baek, J.-B., & Dai, L. (2010). Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 4(3), 1321-1326. doi:10.1021/nn901850u es_ES
dc.description.references Malig, J., Jux, N., Kiessling, D., Cid, J.-J., Vázquez, P., Torres, T., & Guldi, D. M. (2011). Auf dem Weg zu elektronisch abstimmbarem Graphen/Phthalocyanin-PPV-Hybridsystemen. Angewandte Chemie, 123(15), 3623-3627. doi:10.1002/ange.201003364 es_ES
dc.description.references Malig, J., Jux, N., Kiessling, D., Cid, J.-J., Vázquez, P., Torres, T., & Guldi, D. M. (2011). Towards Tunable Graphene/Phthalocyanine-PPV Hybrid Systems. Angewandte Chemie International Edition, 50(15), 3561-3565. doi:10.1002/anie.201003364 es_ES
dc.description.references Malig, J., Romero-Nieto, C., Jux, N., & Guldi, D. M. (2011). Integrating Water-Soluble Graphene into Porphyrin Nanohybrids. Advanced Materials, 24(6), 800-805. doi:10.1002/adma.201103697 es_ES
dc.description.references Costa, R. D., Malig, J., Brenner, W., Jux, N., & Guldi, D. M. (2013). Electron Accepting Porphycenes on Graphene. Advanced Materials, 25(18), 2600-2605. doi:10.1002/adma.201300231 es_ES
dc.description.references Ragoussi, M.-E., Malig, J., Katsukis, G., Butz, B., Spiecker, E., de la Torre, G., … Guldi, D. M. (2012). Linking Photo- and Redoxactive Phthalocyanines Covalently to Graphene. Angewandte Chemie, 124(26), 6527-6531. doi:10.1002/ange.201201452 es_ES
dc.description.references Ragoussi, M.-E., Malig, J., Katsukis, G., Butz, B., Spiecker, E., de la Torre, G., … Guldi, D. M. (2012). Linking Photo- and Redoxactive Phthalocyanines Covalently to Graphene. Angewandte Chemie International Edition, 51(26), 6421-6425. doi:10.1002/anie.201201452 es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Usachov, D., Vilkov, O., Grüneis, A., Haberer, D., Fedorov, A., Adamchuk, V. K., … Vyalikh, D. V. (2011). Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Letters, 11(12), 5401-5407. doi:10.1021/nl2031037 es_ES
dc.description.references Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., & Yu, G. (2009). Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 9(5), 1752-1758. doi:10.1021/nl803279t es_ES
dc.description.references Rani, P., & Jindal, V. K. (2013). Designing band gap of graphene by B and N dopant atoms. RSC Adv., 3(3), 802-812. doi:10.1039/c2ra22664b es_ES
dc.description.references Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2012). Design of graphene-based TiO2 photocatalysts—a review. Environmental Science and Pollution Research, 19(9), 3676-3687. doi:10.1007/s11356-012-0939-4 es_ES
dc.description.references Min, S., & Lu, G. (2011). Dye-Sensitized Reduced Graphene Oxide Photocatalysts for Highly Efficient Visible-Light-Driven Water Reduction. The Journal of Physical Chemistry C, 115(28), 13938-13945. doi:10.1021/jp203750z es_ES
dc.description.references Mou, Z., Dong, Y., Li, S., Du, Y., Wang, X., Yang, P., & Wang, S. (2011). Eosin Y functionalized graphene for photocatalytic hydrogen production from water. International Journal of Hydrogen Energy, 36(15), 8885-8893. doi:10.1016/j.ijhydene.2011.05.003 es_ES
dc.description.references Xiang, Q., Yu, J., & Jaroniec, M. (2011). Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale, 3(9), 3670. doi:10.1039/c1nr10610d es_ES
dc.description.references Jia, L., Wang, D.-H., Huang, Y.-X., Xu, A.-W., & Yu, H.-Q. (2011). Highly Durable N-Doped Graphene/CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution from Water under Visible Light Irradiation. The Journal of Physical Chemistry C, 115(23), 11466-11473. doi:10.1021/jp2023617 es_ES
dc.description.references Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., … Antonietti, M. (2008). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76-80. doi:10.1038/nmat2317 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie, 125(45), 12029-12032. doi:10.1002/ange.201304505 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 es_ES
dc.description.references Primo, A., Forneli, A., Corma, A., & García, H. (2012). From Biomass Wastes to Highly Efficient CO2Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 5(11), 2207-2214. doi:10.1002/cssc.201200366 es_ES
dc.description.references Valentin, R., Molvinger, K., Quignard, F., & Brunel, D. (2003). Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New Journal of Chemistry, 27(12), 1690. doi:10.1039/b310109f es_ES
dc.description.references Bellamkonda, R., Ranieri, J. P., Bouche, N., & Aebischer, P. (1995). Hydrogel-based three-dimensional matrix for neural cells. Journal of Biomedical Materials Research, 29(5), 663-671. doi:10.1002/jbm.820290514 es_ES
dc.description.references Trieu, H., & Qutubuddin, S. (1995). Poly(vinyl alcohol) hydrogels: 2. Effects of processing parameters on structure and properties. Polymer, 36(13), 2531-2539. doi:10.1016/0032-3861(95)91198-g es_ES
dc.description.references Dillon, G. P., Xiaojun Yu, Sridharan, A., Ranieri, J. P., & Bellamkonda, R. V. (1998). The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. Journal of Biomaterials Science, Polymer Edition, 9(10), 1049-1069. doi:10.1163/156856298x00325 es_ES
dc.description.references Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., … Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706-710. doi:10.1038/nature07719 es_ES
dc.description.references Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano, 2(7), 1487-1491. doi:10.1021/nn800251f es_ES
dc.description.references Krishnamoorthy, K., Mohan, R., & Kim, S.-J. (2011). Graphene oxide as a photocatalytic material. Applied Physics Letters, 98(24), 244101. doi:10.1063/1.3599453 es_ES
dc.description.references Zhang, X.-Y., Li, H.-P., Cui, X.-L., & Lin, Y. (2010). Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. Journal of Materials Chemistry, 20(14), 2801. doi:10.1039/b917240h es_ES
dc.description.references Lightcap, I. V., Kosel, T. H., & Kamat, P. V. (2010). Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano Letters, 10(2), 577-583. doi:10.1021/nl9035109 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem