Tran, P. D., Wong, L. H., Barber, J., & Loo, J. S. C. (2012). Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science, 5(3), 5902. doi:10.1039/c2ee02849b
Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235-246. doi:10.1038/nnano.2013.46
Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274
[+]
Tran, P. D., Wong, L. H., Barber, J., & Loo, J. S. C. (2012). Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science, 5(3), 5902. doi:10.1039/c2ee02849b
Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235-246. doi:10.1038/nnano.2013.46
Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274
Latorre-Sánchez, M., Lavorato, C., Puche, M., Fornés, V., Molinari, R., & Garcia, H. (2012). Visible-Light Photocatalytic Hydrogen Generation by Using Dye-Sensitized Graphene Oxide as a Photocatalyst. Chemistry - A European Journal, 18(52), 16774-16783. doi:10.1002/chem.201202372
Peng, T., Li, K., Zeng, P., Zhang, Q., & Zhang, X. (2012). Enhanced Photocatalytic Hydrogen Production over Graphene Oxide–Cadmium Sulfide Nanocomposite under Visible Light Irradiation. The Journal of Physical Chemistry C, 116(43), 22720-22726. doi:10.1021/jp306947d
An, X., & Yu, J. C. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426. doi:10.1039/c1ra00382h
Han, L., Wang, P., & Dong, S. (2012). Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst. Nanoscale, 4(19), 5814. doi:10.1039/c2nr31699d
Ng, Y. H., Lightcap, I. V., Goodwin, K., Matsumura, M., & Kamat, P. V. (2010). To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films? The Journal of Physical Chemistry Letters, 1(15), 2222-2227. doi:10.1021/jz100728z
Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g
Boukhvalov, D. W., Dreyer, D. R., Bielawski, C. W., & Son, Y. (2012). A Computational Investigation of the Catalytic Properties of Graphene Oxide: Exploring Mechanisms by using DFT Methods. ChemCatChem, 4(11), 1844-1849. doi:10.1002/cctc.201200210
Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102j
Jia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). C–H oxidation using graphite oxide. Tetrahedron, 67(24), 4431-4434. doi:10.1016/j.tet.2011.02.065
Zaleska, A. (2008). Doped-TiO2: A Review. Recent Patents on Engineering, 2(3), 157-164. doi:10.2174/187221208786306289
Sathish, M., Viswanathan, B., Viswanath, R. P., & Gopinath, C. S. (2005). Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2Nanocatalyst. Chemistry of Materials, 17(25), 6349-6353. doi:10.1021/cm052047v
Cong, Y., Zhang, J., Chen, F., & Anpo, M. (2007). Synthesis and Characterization of Nitrogen-Doped TiO2Nanophotocatalyst with High Visible Light Activity. The Journal of Physical Chemistry C, 111(19), 6976-6982. doi:10.1021/jp0685030
Ballesteros-Garrido, R., de Miguel, M., Doménech-Carbó, A., Alvaro, M., & Garcia, H. (2013). Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene. Chemical Communications, 49(31), 3236. doi:10.1039/c3cc39145k
Qu, L., Liu, Y., Baek, J.-B., & Dai, L. (2010). Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 4(3), 1321-1326. doi:10.1021/nn901850u
Malig, J., Jux, N., Kiessling, D., Cid, J.-J., Vázquez, P., Torres, T., & Guldi, D. M. (2011). Auf dem Weg zu elektronisch abstimmbarem Graphen/Phthalocyanin-PPV-Hybridsystemen. Angewandte Chemie, 123(15), 3623-3627. doi:10.1002/ange.201003364
Malig, J., Jux, N., Kiessling, D., Cid, J.-J., Vázquez, P., Torres, T., & Guldi, D. M. (2011). Towards Tunable Graphene/Phthalocyanine-PPV Hybrid Systems. Angewandte Chemie International Edition, 50(15), 3561-3565. doi:10.1002/anie.201003364
Malig, J., Romero-Nieto, C., Jux, N., & Guldi, D. M. (2011). Integrating Water-Soluble Graphene into Porphyrin Nanohybrids. Advanced Materials, 24(6), 800-805. doi:10.1002/adma.201103697
Costa, R. D., Malig, J., Brenner, W., Jux, N., & Guldi, D. M. (2013). Electron Accepting Porphycenes on Graphene. Advanced Materials, 25(18), 2600-2605. doi:10.1002/adma.201300231
Ragoussi, M.-E., Malig, J., Katsukis, G., Butz, B., Spiecker, E., de la Torre, G., … Guldi, D. M. (2012). Linking Photo- and Redoxactive Phthalocyanines Covalently to Graphene. Angewandte Chemie, 124(26), 6527-6531. doi:10.1002/ange.201201452
Ragoussi, M.-E., Malig, J., Katsukis, G., Butz, B., Spiecker, E., de la Torre, G., … Guldi, D. M. (2012). Linking Photo- and Redoxactive Phthalocyanines Covalently to Graphene. Angewandte Chemie International Edition, 51(26), 6421-6425. doi:10.1002/anie.201201452
Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g
Usachov, D., Vilkov, O., Grüneis, A., Haberer, D., Fedorov, A., Adamchuk, V. K., … Vyalikh, D. V. (2011). Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Letters, 11(12), 5401-5407. doi:10.1021/nl2031037
Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., & Yu, G. (2009). Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 9(5), 1752-1758. doi:10.1021/nl803279t
Rani, P., & Jindal, V. K. (2013). Designing band gap of graphene by B and N dopant atoms. RSC Adv., 3(3), 802-812. doi:10.1039/c2ra22664b
Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2012). Design of graphene-based TiO2 photocatalysts—a review. Environmental Science and Pollution Research, 19(9), 3676-3687. doi:10.1007/s11356-012-0939-4
Min, S., & Lu, G. (2011). Dye-Sensitized Reduced Graphene Oxide Photocatalysts for Highly Efficient Visible-Light-Driven Water Reduction. The Journal of Physical Chemistry C, 115(28), 13938-13945. doi:10.1021/jp203750z
Mou, Z., Dong, Y., Li, S., Du, Y., Wang, X., Yang, P., & Wang, S. (2011). Eosin Y functionalized graphene for photocatalytic hydrogen production from water. International Journal of Hydrogen Energy, 36(15), 8885-8893. doi:10.1016/j.ijhydene.2011.05.003
Xiang, Q., Yu, J., & Jaroniec, M. (2011). Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale, 3(9), 3670. doi:10.1039/c1nr10610d
Jia, L., Wang, D.-H., Huang, Y.-X., Xu, A.-W., & Yu, H.-Q. (2011). Highly Durable N-Doped Graphene/CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution from Water under Visible Light Irradiation. The Journal of Physical Chemistry C, 115(23), 11466-11473. doi:10.1021/jp2023617
Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., … Antonietti, M. (2008). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76-80. doi:10.1038/nmat2317
Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie, 125(45), 12029-12032. doi:10.1002/ange.201304505
Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505
Primo, A., Forneli, A., Corma, A., & García, H. (2012). From Biomass Wastes to Highly Efficient CO2Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 5(11), 2207-2214. doi:10.1002/cssc.201200366
Valentin, R., Molvinger, K., Quignard, F., & Brunel, D. (2003). Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New Journal of Chemistry, 27(12), 1690. doi:10.1039/b310109f
Bellamkonda, R., Ranieri, J. P., Bouche, N., & Aebischer, P. (1995). Hydrogel-based three-dimensional matrix for neural cells. Journal of Biomedical Materials Research, 29(5), 663-671. doi:10.1002/jbm.820290514
Trieu, H., & Qutubuddin, S. (1995). Poly(vinyl alcohol) hydrogels: 2. Effects of processing parameters on structure and properties. Polymer, 36(13), 2531-2539. doi:10.1016/0032-3861(95)91198-g
Dillon, G. P., Xiaojun Yu, Sridharan, A., Ranieri, J. P., & Bellamkonda, R. V. (1998). The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. Journal of Biomaterials Science, Polymer Edition, 9(10), 1049-1069. doi:10.1163/156856298x00325
Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., … Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706-710. doi:10.1038/nature07719
Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano, 2(7), 1487-1491. doi:10.1021/nn800251f
Krishnamoorthy, K., Mohan, R., & Kim, S.-J. (2011). Graphene oxide as a photocatalytic material. Applied Physics Letters, 98(24), 244101. doi:10.1063/1.3599453
Zhang, X.-Y., Li, H.-P., Cui, X.-L., & Lin, Y. (2010). Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. Journal of Materials Chemistry, 20(14), 2801. doi:10.1039/b917240h
Lightcap, I. V., Kosel, T. H., & Kamat, P. V. (2010). Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano Letters, 10(2), 577-583. doi:10.1021/nl9035109
[-]