- -

Twin axial vortices generated by Fibonacci lenses

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Twin axial vortices generated by Fibonacci lenses

Show full item record

Calatayud Calatayud, A.; Ferrando Martín, V.; Remón Martín, L.; WALTER DANIEL FURLAN; Monsoriu Serra, JA. (2013). Twin axial vortices generated by Fibonacci lenses. Optics Express. 21(8):10234-10239. doi:10.1364/OE.21.010234

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60110

Files in this item

Item Metadata

Title: Twin axial vortices generated by Fibonacci lenses
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
Optical vortex beams, generated by Diffractive Optical Elements (DOEs), are capable of creating optical traps and other multifunctional micromanipulators for very specific tasks in the microscopic scale. Using the Fibonacci ...[+]
Subjects: Diffraction , Diffractive optics , Optical vortices , Fractal zone plates , Devils vortex-lenses
Copyrigths: Reserva de todos los derechos
Source:
Optics Express. (issn: 1094-4087 ) (eissn: 1094-4087 )
DOI: 10.1364/OE.21.010234
Publisher:
Optical Society of America: Open Access Journals
Publisher version: http://dx.doi.org/10.1016/:10.1364/OE.21.010234
Thanks:
We acknowledge the financial support from Ministerio de Economia y Competitividad (grant FIS2011-23175), Generalitat Valenciana (grant PROMETEO2009-077), and Universitat Politecnica de Valencia (SP20120569), Spain. L.R. ...[+]
Type: Artículo

References

Sakdinawat, A., & Liu, Y. (2007). Soft-x-ray microscopy using spiral zone plates. Optics Letters, 32(18), 2635. doi:10.1364/ol.32.002635

Siemion, A., Siemion, A., Makowski, M., Suszek, J., Bomba, J., Czerwiński, A., … Sypek, M. (2012). Diffractive paper lens for terahertz optics. Optics Letters, 37(20), 4320. doi:10.1364/ol.37.004320

Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971 [+]
Sakdinawat, A., & Liu, Y. (2007). Soft-x-ray microscopy using spiral zone plates. Optics Letters, 32(18), 2635. doi:10.1364/ol.32.002635

Siemion, A., Siemion, A., Makowski, M., Suszek, J., Bomba, J., Czerwiński, A., … Sypek, M. (2012). Diffractive paper lens for terahertz optics. Optics Letters, 37(20), 4320. doi:10.1364/ol.37.004320

Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971

Davis, J. A., Sigarlaki, S. P., Craven, J. M., & Calvo, M. L. (2006). Fourier series analysis of fractal lenses: theory and experiments with a liquid-crystal display. Applied Optics, 45(6), 1187. doi:10.1364/ao.45.001187

Furlan, W. D., Saavedra, G., & Monsoriu, J. A. (2007). White-light imaging with fractal zone plates. Optics Letters, 32(15), 2109. doi:10.1364/ol.32.002109

Roux, F. S. (2004). Distribution of angular momentum and vortex morphology in optical beams. Optics Communications, 242(1-3), 45-55. doi:10.1016/j.optcom.2004.08.006

Gbur, G., & Visser, T. D. (2006). Phase singularities and coherence vortices in linear optical systems. Optics Communications, 259(2), 428-435. doi:10.1016/j.optcom.2005.08.074

Bishop, A. I., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2003). Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Physical Review A, 68(3). doi:10.1103/physreva.68.033802

Ladavac, K., & Grier, D. G. (2004). Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Optics Express, 12(6), 1144. doi:10.1364/opex.12.001144

Lee, W. M., Yuan, X.-C., & Cheong, W. C. (2004). Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Optics Letters, 29(15), 1796. doi:10.1364/ol.29.001796

Tao, S. H., Yuan, X.-C., Lin, J., & Burge, R. E. (2006). Sequence of focused optical vortices generated by a spiral fractal zone plate. Applied Physics Letters, 89(3), 031105. doi:10.1063/1.2226995

Furlan, W. D., Giménez, F., Calatayud, A., & Monsoriu, J. A. (2009). Devil’s vortex-lenses. Optics Express, 17(24), 21891. doi:10.1364/oe.17.021891

Maciá, E. (2012). Exploiting aperiodic designs in nanophotonic devices. Reports on Progress in Physics, 75(3), 036502. doi:10.1088/0034-4885/75/3/036502

Sah, Y., & Ranganath, G. . (1995). Optical diffraction in some Fibonacci structures. Optics Communications, 114(1-2), 18-24. doi:10.1016/0030-4018(94)00600-y

Gedzelman, S. D., & Vollmer, M. (2011). Crepuscular rays: laboratory experiments and simulations. Applied Optics, 50(28), F142. doi:10.1364/ao.50.00f142

Swartzlander, G. A. (2001). Peering into darkness with a vortex spatial filter. Optics Letters, 26(8), 497. doi:10.1364/ol.26.000497

Curtis, J. E., & Grier, D. G. (2003). Structure of Optical Vortices. Physical Review Letters, 90(13). doi:10.1103/physrevlett.90.133901

Calatayud, A., Rodrigo, J. A., Remón, L., Furlan, W. D., Cristóbal, G., & Monsoriu, J. A. (2012). Experimental generation and characterization of Devil’s vortex-lenses. Applied Physics B, 106(4), 915-919. doi:10.1007/s00340-012-4913-0

[-]

This item appears in the following Collection(s)

Show full item record