Mostrar el registro sencillo del ítem
dc.contributor.author | Calatayud Calatayud, Arnau | es_ES |
dc.contributor.author | Ferrando Martín, Vicente | es_ES |
dc.contributor.author | Remón Martín, Laura | es_ES |
dc.contributor.author | WALTER DANIEL FURLAN | es_ES |
dc.contributor.author | Monsoriu Serra, Juan Antonio | es_ES |
dc.date.accessioned | 2016-01-21T12:10:05Z | |
dc.date.available | 2016-01-21T12:10:05Z | |
dc.date.issued | 2013-04-22 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.uri | http://hdl.handle.net/10251/60110 | |
dc.description.abstract | Optical vortex beams, generated by Diffractive Optical Elements (DOEs), are capable of creating optical traps and other multifunctional micromanipulators for very specific tasks in the microscopic scale. Using the Fibonacci sequence, we have discovered a new family of DOEs that inherently behave as bifocal vortex lenses, and where the ratio of the two focal distances approaches the golden mean. The disctintive optical properties of these Fibonacci vortex lenses are experimentally demonstrated. We believe that the versatility and potential scalability of these lenses may allow for new applications in micro and nanophotonics. | es_ES |
dc.description.sponsorship | We acknowledge the financial support from Ministerio de Economia y Competitividad (grant FIS2011-23175), Generalitat Valenciana (grant PROMETEO2009-077), and Universitat Politecnica de Valencia (SP20120569), Spain. L.R. acknowledges a fellowship of "Fundacion CajaMurcia", Spain. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America: Open Access Journals | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Diffraction | es_ES |
dc.subject | Diffractive optics | es_ES |
dc.subject | Optical vortices | es_ES |
dc.subject | Fractal zone plates | es_ES |
dc.subject | Devils vortex-lenses | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Twin axial vortices generated by Fibonacci lenses | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.21.010234 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2011-23175/ES/DISEÑO Y REALIZACION DE ESTRUCTURAS DIFRACTIVAS APERIODICAS: NUEVAS LENTES OFTALMICAS Y OTRAS APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2009%2F077/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120569/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Calatayud Calatayud, A.; Ferrando Martín, V.; Remón Martín, L.; WALTER DANIEL FURLAN; Monsoriu Serra, JA. (2013). Twin axial vortices generated by Fibonacci lenses. Optics Express. 21(8):10234-10239. https://doi.org/10.1364/OE.21.010234 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/:10.1364/OE.21.010234 | es_ES |
dc.description.upvformatpinicio | 10234 | es_ES |
dc.description.upvformatpfin | 10239 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 246578 | es_ES |
dc.identifier.eissn | 1094-4087 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Sakdinawat, A., & Liu, Y. (2007). Soft-x-ray microscopy using spiral zone plates. Optics Letters, 32(18), 2635. doi:10.1364/ol.32.002635 | es_ES |
dc.description.references | Siemion, A., Siemion, A., Makowski, M., Suszek, J., Bomba, J., Czerwiński, A., … Sypek, M. (2012). Diffractive paper lens for terahertz optics. Optics Letters, 37(20), 4320. doi:10.1364/ol.37.004320 | es_ES |
dc.description.references | Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971 | es_ES |
dc.description.references | Davis, J. A., Sigarlaki, S. P., Craven, J. M., & Calvo, M. L. (2006). Fourier series analysis of fractal lenses: theory and experiments with a liquid-crystal display. Applied Optics, 45(6), 1187. doi:10.1364/ao.45.001187 | es_ES |
dc.description.references | Furlan, W. D., Saavedra, G., & Monsoriu, J. A. (2007). White-light imaging with fractal zone plates. Optics Letters, 32(15), 2109. doi:10.1364/ol.32.002109 | es_ES |
dc.description.references | Roux, F. S. (2004). Distribution of angular momentum and vortex morphology in optical beams. Optics Communications, 242(1-3), 45-55. doi:10.1016/j.optcom.2004.08.006 | es_ES |
dc.description.references | Gbur, G., & Visser, T. D. (2006). Phase singularities and coherence vortices in linear optical systems. Optics Communications, 259(2), 428-435. doi:10.1016/j.optcom.2005.08.074 | es_ES |
dc.description.references | Bishop, A. I., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2003). Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Physical Review A, 68(3). doi:10.1103/physreva.68.033802 | es_ES |
dc.description.references | Ladavac, K., & Grier, D. G. (2004). Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Optics Express, 12(6), 1144. doi:10.1364/opex.12.001144 | es_ES |
dc.description.references | Lee, W. M., Yuan, X.-C., & Cheong, W. C. (2004). Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Optics Letters, 29(15), 1796. doi:10.1364/ol.29.001796 | es_ES |
dc.description.references | Tao, S. H., Yuan, X.-C., Lin, J., & Burge, R. E. (2006). Sequence of focused optical vortices generated by a spiral fractal zone plate. Applied Physics Letters, 89(3), 031105. doi:10.1063/1.2226995 | es_ES |
dc.description.references | Furlan, W. D., Giménez, F., Calatayud, A., & Monsoriu, J. A. (2009). Devil’s vortex-lenses. Optics Express, 17(24), 21891. doi:10.1364/oe.17.021891 | es_ES |
dc.description.references | Maciá, E. (2012). Exploiting aperiodic designs in nanophotonic devices. Reports on Progress in Physics, 75(3), 036502. doi:10.1088/0034-4885/75/3/036502 | es_ES |
dc.description.references | Sah, Y., & Ranganath, G. . (1995). Optical diffraction in some Fibonacci structures. Optics Communications, 114(1-2), 18-24. doi:10.1016/0030-4018(94)00600-y | es_ES |
dc.description.references | Gedzelman, S. D., & Vollmer, M. (2011). Crepuscular rays: laboratory experiments and simulations. Applied Optics, 50(28), F142. doi:10.1364/ao.50.00f142 | es_ES |
dc.description.references | Swartzlander, G. A. (2001). Peering into darkness with a vortex spatial filter. Optics Letters, 26(8), 497. doi:10.1364/ol.26.000497 | es_ES |
dc.description.references | Curtis, J. E., & Grier, D. G. (2003). Structure of Optical Vortices. Physical Review Letters, 90(13). doi:10.1103/physrevlett.90.133901 | es_ES |
dc.description.references | Calatayud, A., Rodrigo, J. A., Remón, L., Furlan, W. D., Cristóbal, G., & Monsoriu, J. A. (2012). Experimental generation and characterization of Devil’s vortex-lenses. Applied Physics B, 106(4), 915-919. doi:10.1007/s00340-012-4913-0 | es_ES |