- -

Quantitative characterization of bandgap properties of sets of isolated acoustic scatterers arranged using fractal geometries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantitative characterization of bandgap properties of sets of isolated acoustic scatterers arranged using fractal geometries

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castiñeira Ibáñez, Sergio es_ES
dc.contributor.author Rubio Michavila, Constanza es_ES
dc.contributor.author Redondo, Javier es_ES
dc.contributor.author Sánchez Pérez, Juan Vicente es_ES
dc.date.accessioned 2016-01-27T07:56:17Z
dc.date.issued 2014-04
dc.identifier.issn 1882-0778
dc.identifier.uri http://hdl.handle.net/10251/60215
dc.description.abstract The improvement in the bandgap properties of a set of acoustic scatterers arranged according to a fractal geometry is theoretically quantified in this work using the multiple scattering theory. The analysis considers the growth process of two different arrangements of rigid cylinders in air created from a starting cluster: a classical triangular crystalline array and an arrangement of cylinders based on a fractal geometry called a Sierpinski triangle. The obtained results, which are experimentally validated, show a dramatic increase in the size of the bandgap when the fractal geometry is used. es_ES
dc.description.sponsorship This work was financially supported by the Spanish Ministry of Science and Innovation through project MTM2012-36740-C02-02. en_EN
dc.language Inglés es_ES
dc.publisher Japan Society of Applied Physics es_ES
dc.relation.ispartof Applied Physics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bandgap properties es_ES
dc.subject wave control device es_ES
dc.subject Fractal geometry es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Quantitative characterization of bandgap properties of sets of isolated acoustic scatterers arranged using fractal geometries es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.7567/APEX.7.042201
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/Operadores multilineales, espacios de funciones integrables y aplicaciones/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Castiñeira Ibáñez, S.; Rubio Michavila, C.; Redondo, J.; Sánchez Pérez, JV. (2014). Quantitative characterization of bandgap properties of sets of isolated acoustic scatterers arranged using fractal geometries. Applied Physics Express. 7(4):42201-1-42201-4. https://doi.org/10.7567/APEX.7.042201 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.7567/APEX.7.042201 es_ES
dc.description.upvformatpinicio 42201-1 es_ES
dc.description.upvformatpfin 42201-4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 259258 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059 es_ES
dc.description.references John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486 es_ES
dc.description.references Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2007). Acoustic metamaterials for new two-dimensional sonic devices. New Journal of Physics, 9(9), 323-323. doi:10.1088/1367-2630/9/9/323 es_ES
dc.description.references Wu, F., Hou, Z., Liu, Z., & Liu, Y. (2001). Point defect states in two-dimensional phononic crystals. Physics Letters A, 292(3), 198-202. doi:10.1016/s0375-9601(01)00800-3 es_ES
dc.description.references Wu, L.-Y., Chen, L.-W., & Liu, C.-M. (2009). Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal. Physica B: Condensed Matter, 404(12-13), 1766-1770. doi:10.1016/j.physb.2009.02.025 es_ES
dc.description.references Vasseur, J. O., Deymier, P. A., Djafari-Rouhani, B., Pennec, Y., & Hladky-Hennion, A.-C. (2008). Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Physical Review B, 77(8). doi:10.1103/physrevb.77.085415 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics, 110(1), 014904. doi:10.1063/1.3599886 es_ES
dc.description.references Lai, Y., Zhang, X., & Zhang, Z.-Q. (2002). Large sonic band gaps in 12-fold quasicrystals. Journal of Applied Physics, 91(9), 6191-6193. doi:10.1063/1.1465114 es_ES
dc.description.references Romero-García, V., Fuster, E., García-Raffi, L. M., Sánchez-Pérez, E. A., Sopena, M., Llinares, J., & Sánchez-Pérez, J. V. (2006). Band gap creation using quasiordered structures based on sonic crystals. Applied Physics Letters, 88(17), 174104. doi:10.1063/1.2198012 es_ES
dc.description.references Florescu, M., Torquato, S., & Steinhardt, P. J. (2009). Designer disordered materials with large, complete photonic band gaps. Proceedings of the National Academy of Sciences, 106(49), 20658-20663. doi:10.1073/pnas.0907744106 es_ES
dc.description.references Castiñeira-Ibáñez, S., Rubio, C., Romero-García, V., Sánchez-Pérez, J. V., & García-Raffi, L. M. (2012). Design, Manufacture and Characterization of an Acoustic Barrier Made of Multi-Phenomena Cylindrical Scatterers Arranged in a Fractal-Based Geometry. Archives of Acoustics, 37(4), 455-462. doi:10.2478/v10168-012-0057-9 es_ES
dc.description.references Kuo, N.-K., & Piazza, G. (2011). Fractal phononic crystals in aluminum nitride: An approach to ultra high frequency bandgaps. Applied Physics Letters, 99(16), 163501. doi:10.1063/1.3651760 es_ES
dc.description.references Castiñeira-Ibáñez, S., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Overlapping of acoustic bandgaps using fractal geometries. EPL (Europhysics Letters), 92(2), 24007. doi:10.1209/0295-5075/92/24007 es_ES
dc.description.references Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393 es_ES
dc.description.references Economou, E. N., & Sigalas, M. M. (1993). Classical wave propagation in periodic structures: Cermet versus network topology. Physical Review B, 48(18), 13434-13438. doi:10.1103/physrevb.48.13434 es_ES
dc.description.references Chen, Y.-Y., & Ye, Z. (2001). Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 64(3). doi:10.1103/physreve.64.036616 es_ES
dc.description.references Twersky, V. (1952). Multiple Scattering of Radiation by an Arbitrary Configuration of Parallel Cylinders. The Journal of the Acoustical Society of America, 24(1), 42-46. doi:10.1121/1.1906845 es_ES
dc.description.references Mei, J., Wu, Y., & Liu, Z. (2012). Effective medium of periodic fluid-solid composites. EPL (Europhysics Letters), 98(5), 54001. doi:10.1209/0295-5075/98/54001 es_ES
dc.description.references Mei, J., Qiu, C., Shi, J., & Liu, Z. (2009). Highly directional liquid surface wave source based on resonant cavity. Physics Letters A, 373(33), 2948-2952. doi:10.1016/j.physleta.2009.06.024 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem