- -

Quantitative characterization of bandgap properties of sets of isolated acoustic scatterers arranged using fractal geometries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantitative characterization of bandgap properties of sets of isolated acoustic scatterers arranged using fractal geometries

Mostrar el registro completo del ítem

Castiñeira Ibáñez, S.; Rubio Michavila, C.; Redondo, J.; Sánchez Pérez, JV. (2014). Quantitative characterization of bandgap properties of sets of isolated acoustic scatterers arranged using fractal geometries. Applied Physics Express. 7(4):42201-1-42201-4. https://doi.org/10.7567/APEX.7.042201

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60215

Ficheros en el ítem

Metadatos del ítem

Título: Quantitative characterization of bandgap properties of sets of isolated acoustic scatterers arranged using fractal geometries
Autor: Castiñeira Ibáñez, Sergio Rubio Michavila, Constanza Redondo, Javier Sánchez Pérez, Juan Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
The improvement in the bandgap properties of a set of acoustic scatterers arranged according to a fractal geometry is theoretically quantified in this work using the multiple scattering theory. The analysis considers the ...[+]
Palabras clave: Bandgap properties , wave control device , Fractal geometry
Derechos de uso: Cerrado
Fuente:
Applied Physics Express. (issn: 1882-0778 )
DOI: 10.7567/APEX.7.042201
Editorial:
Japan Society of Applied Physics
Versión del editor: http://dx.doi.org/10.7567/APEX.7.042201
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/Operadores multilineales, espacios de funciones integrables y aplicaciones/
Agradecimientos:
This work was financially supported by the Spanish Ministry of Science and Innovation through project MTM2012-36740-C02-02.
Tipo: Artículo

References

Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059

John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486

Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 [+]
Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059

John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486

Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325

Torrent, D., & Sánchez-Dehesa, J. (2007). Acoustic metamaterials for new two-dimensional sonic devices. New Journal of Physics, 9(9), 323-323. doi:10.1088/1367-2630/9/9/323

Wu, F., Hou, Z., Liu, Z., & Liu, Y. (2001). Point defect states in two-dimensional phononic crystals. Physics Letters A, 292(3), 198-202. doi:10.1016/s0375-9601(01)00800-3

Wu, L.-Y., Chen, L.-W., & Liu, C.-M. (2009). Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal. Physica B: Condensed Matter, 404(12-13), 1766-1770. doi:10.1016/j.physb.2009.02.025

Vasseur, J. O., Deymier, P. A., Djafari-Rouhani, B., Pennec, Y., & Hladky-Hennion, A.-C. (2008). Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Physical Review B, 77(8). doi:10.1103/physrevb.77.085415

Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics, 110(1), 014904. doi:10.1063/1.3599886

Lai, Y., Zhang, X., & Zhang, Z.-Q. (2002). Large sonic band gaps in 12-fold quasicrystals. Journal of Applied Physics, 91(9), 6191-6193. doi:10.1063/1.1465114

Romero-García, V., Fuster, E., García-Raffi, L. M., Sánchez-Pérez, E. A., Sopena, M., Llinares, J., & Sánchez-Pérez, J. V. (2006). Band gap creation using quasiordered structures based on sonic crystals. Applied Physics Letters, 88(17), 174104. doi:10.1063/1.2198012

Florescu, M., Torquato, S., & Steinhardt, P. J. (2009). Designer disordered materials with large, complete photonic band gaps. Proceedings of the National Academy of Sciences, 106(49), 20658-20663. doi:10.1073/pnas.0907744106

Castiñeira-Ibáñez, S., Rubio, C., Romero-García, V., Sánchez-Pérez, J. V., & García-Raffi, L. M. (2012). Design, Manufacture and Characterization of an Acoustic Barrier Made of Multi-Phenomena Cylindrical Scatterers Arranged in a Fractal-Based Geometry. Archives of Acoustics, 37(4), 455-462. doi:10.2478/v10168-012-0057-9

Kuo, N.-K., & Piazza, G. (2011). Fractal phononic crystals in aluminum nitride: An approach to ultra high frequency bandgaps. Applied Physics Letters, 99(16), 163501. doi:10.1063/1.3651760

Castiñeira-Ibáñez, S., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Overlapping of acoustic bandgaps using fractal geometries. EPL (Europhysics Letters), 92(2), 24007. doi:10.1209/0295-5075/92/24007

Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393

Economou, E. N., & Sigalas, M. M. (1993). Classical wave propagation in periodic structures: Cermet versus network topology. Physical Review B, 48(18), 13434-13438. doi:10.1103/physrevb.48.13434

Chen, Y.-Y., & Ye, Z. (2001). Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 64(3). doi:10.1103/physreve.64.036616

Twersky, V. (1952). Multiple Scattering of Radiation by an Arbitrary Configuration of Parallel Cylinders. The Journal of the Acoustical Society of America, 24(1), 42-46. doi:10.1121/1.1906845

Mei, J., Wu, Y., & Liu, Z. (2012). Effective medium of periodic fluid-solid composites. EPL (Europhysics Letters), 98(5), 54001. doi:10.1209/0295-5075/98/54001

Mei, J., Qiu, C., Shi, J., & Liu, Z. (2009). Highly directional liquid surface wave source based on resonant cavity. Physics Letters A, 373(33), 2948-2952. doi:10.1016/j.physleta.2009.06.024

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem