- -

Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition

Mostrar el registro completo del ítem

Casano, L.; Del Campo, E.; García Breijo, FJ.; Reig Armiñana, J.; Gasulla, F.; Del Hoyo, A.; Guéra, A.... (2011). Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition. Environmental Microbiology. 13(3):806-818. https://doi.org/10.1111/j.1462-2920.2010.02386.x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60269

Ficheros en el ítem

Metadatos del ítem

Título: Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition
Autor: Casano, L. Del Campo, E.M. García Breijo, Francisco José Reig Armiñana, José Gasulla, F. del Hoyo, A. Guéra, A. Barreno, E.
Entidad UPV: Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Fecha difusión:
Resumen:
Ramalina farinacea is an epiphytic fruticose lichen that is relatively abundant in areas with Mediterranean, subtropical or temperate climates. Little is known about photobiont diversity in different lichen populations. ...[+]
Palabras clave: Article , Ascomycetes , Cytology , Green alga , Lichens , Light , Photosynthesis , Physiology , Spain , Symbiosis , Ultrastructure , United States , Ascomycota , California , Chlorophyta , Algae , Ramalina farinacea , Trebouxia
Derechos de uso: Reserva de todos los derechos
Fuente:
Environmental Microbiology. (issn: 1462-2912 )
DOI: 10.1111/j.1462-2920.2010.02386.x
Editorial:
WILEY-BLACKWELL
Versión del editor: http://dx.doi.org/10.1111/j.1462-2920.2010.02386.x
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//CGL2006-12917-C02-01/ES/FOTOBIONTES DE LIQUENES: DIVERSIDAD MORFOLOGICA, GENETICA Y FUNCIONAL. RESPUESTAS FRENTE A CONDICIONES ADVERSAS./
info:eu-repo/grantAgreement/MICINN//CGL2009-13429-C02-01/
info:eu-repo/grantAgreement/MICINN//CGL2009-13429-C02-02/
info:eu-repo/grantAgreement/MAEC//A%2F024755%2F09/ES/CARACTERIZACIÓN GENÉTICA, FISIOLÓGICA Y ANATÓMICA DE LOS LÍQUENES BIOINDICADORES DE BOSQUES SUSTENTABLES Y VULNERABLES AL CAMBIO CLIMÁTICO. PARQUE NACIONAL EL CHICO (HIDALGO) Y FSC EN SIERRA DE JUÁREZ (OAXACA), MÉXICO/
info:eu-repo/grantAgreement/GVA//PROMETEO 174%2F2008/
Agradecimientos:
This study was funded by the Spanish Ministry of Education and Science (CGL2006-12917-C02-01/02), the Spanish Ministry of Science and Innovation (CGL2009-13429-C02-01/02), the AECID (PCI_A/024755/09) and the Generalitat ...[+]
Tipo: Artículo

References

Angert, A. L., Huxman, T. E., Chesson, P., & Venable, D. L. (2009). Functional tradeoffs determine species coexistence via the storage effect. Proceedings of the National Academy of Sciences, 106(28), 11641-11645. doi:10.1073/pnas.0904512106

Baker, N. R., & Oxborough, K. (s. f.). Chlorophyll Fluorescence as a Probe of Photosynthetic Productivity. Advances in Photosynthesis and Respiration, 65-82. doi:10.1007/978-1-4020-3218-9_3

Barreno , E. Herrera-Campos , M. García-Breijo , F. Gasulla , F. Reig-Armiñana , J. 2008 Non photosynthetic bacteria associated to cortical structures on Ramalina and Usnea thalli from Mexico http://192.104.39.110/archive/IAL6abstracts.pdf [+]
Angert, A. L., Huxman, T. E., Chesson, P., & Venable, D. L. (2009). Functional tradeoffs determine species coexistence via the storage effect. Proceedings of the National Academy of Sciences, 106(28), 11641-11645. doi:10.1073/pnas.0904512106

Baker, N. R., & Oxborough, K. (s. f.). Chlorophyll Fluorescence as a Probe of Photosynthetic Productivity. Advances in Photosynthesis and Respiration, 65-82. doi:10.1007/978-1-4020-3218-9_3

Barreno , E. Herrera-Campos , M. García-Breijo , F. Gasulla , F. Reig-Armiñana , J. 2008 Non photosynthetic bacteria associated to cortical structures on Ramalina and Usnea thalli from Mexico http://192.104.39.110/archive/IAL6abstracts.pdf

BECK, A., FRIEDL, T., & RAMBOLD, G. (1998). Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytologist, 139(4), 709-720. doi:10.1046/j.1469-8137.1998.00231.x

Bilger, W., & Bj�rkman, O. (1991). Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves ofGossypium hirsutum L. andMalva parviflora L. Planta, 184(2), 226-234. doi:10.1007/bf01102422

Bj�rkman, O., & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170(4), 489-504. doi:10.1007/bf00402983

Bold, H. C., & Parker, B. C. (1962). Some supplementary attributes in the classification of chlorococcum species. Archiv f�r Mikrobiologie, 42(3), 267-288. doi:10.1007/bf00422045

Cenis, J. L. (1992). Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research, 20(9), 2380-2380. doi:10.1093/nar/20.9.2380

Del Campo, E. M., Casano, L. M., Gasulla, F., & Barreno, E. (2010). Suitability of chloroplast LSU rDNA and its diverse group I introns for species recognition and phylogenetic analyses of lichen-forming Trebouxia algae. Molecular Phylogenetics and Evolution, 54(2), 437-444. doi:10.1016/j.ympev.2009.10.024

Demmig-Adams, B., & Adams, W. W. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1(1), 21-26. doi:10.1016/s1360-1385(96)80019-7

Demmig-Adams, B., M�guas, C., Adams, W. W., Meyer, A., Kilian, E., & Lange, O. L. (1990). Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta, 180(3), 400-409. doi:10.1007/bf01160396

DePriest, P. T. (2004). Early Molecular Investigations of Lichen-Forming Symbionts: 1986–2001. Annual Review of Microbiology, 58(1), 273-301. doi:10.1146/annurev.micro.58.030603.123730

DOERING, M., & PIERCEY-NORMORE, M. D. (2009). Genetically divergent algae shape an epiphytic lichen community on Jack Pine in Manitoba. The Lichenologist, 41(1), 69-80. doi:10.1017/s0024282909008111

Friedl, T. (1989). Comparative ultrastructure of pyrenoids inTrebouxia (Microthamniales, Chlorophyta). Plant Systematics and Evolution, 164(1-4), 145-159. doi:10.1007/bf00940435

Gasulla, F., de Nova, P. G., Esteban-Carrasco, A., Zapata, J. M., Barreno, E., & Guéra, A. (2009). Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta, 231(1), 195-208. doi:10.1007/s00425-009-1019-y

Gasulla, F., Guéra, A., & Barreno, E. (2010). “A simple and rapid method for isolating lichen photobionts“. Symbiosis, 51(2), 175-179. doi:10.1007/s13199-010-0064-4

Gauze, G. F. (1934). The struggle for existence, by G. F. Gause. doi:10.5962/bhl.title.4489

Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. doi:10.1016/s0304-4165(89)80016-9

Gross, K. (2008). Positive interactions among competitors can produce species-rich communities. Ecology Letters, 11(9), 929-936. doi:10.1111/j.1461-0248.2008.01204.x

GUZOW-KRZEMIŃSKA, B. (2006). Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. The Lichenologist, 38(5), 469-476. doi:10.1017/s0024282906005068

Haruta, S., Kato, S., Yamamoto, K., & Igarashi, Y. (2009). Intertwined interspecies relationships: approaches to untangle the microbial network. Environmental Microbiology, 11(12), 2963-2969. doi:10.1111/j.1462-2920.2009.01956.x

JOHANSEN, S., & HAUGEN, P. (2001). A new nomenclature of group I introns in ribosomal DNA. RNA, 7(7), 935-936. doi:10.1017/s1355838201010500

Jones, A. ., Berkelmans, R., van Oppen, M. J. ., Mieog, J. ., & Sinclair, W. (2008). A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences, 275(1641), 1359-1365. doi:10.1098/rspb.2008.0069

Kopecky, J., Azarkovich, M., Pfündel, E. E., Shuvalov, V. A., & Heber, U. (2005). Thermal Dissipation of Light Energy is Regulated Differently and by Different Mechanisms in Lichens and Higher Plants. Plant Biology, 7(2), 156-167. doi:10.1055/s-2005-837471

Kosugi, M., Arita, M., Shizuma, R., Moriyama, Y., Kashino, Y., Koike, H., & Satoh, K. (2009). Responses to Desiccation Stress in Lichens are Different from Those in Their Photobionts. Plant and Cell Physiology, 50(4), 879-888. doi:10.1093/pcp/pcp043

Kranner, I., Cram, W. J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E., & Pfeifhofer, H. W. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proceedings of the National Academy of Sciences, 102(8), 3141-3146. doi:10.1073/pnas.0407716102

Kroken, S., & Taylor, J. W. (2000). Phylogenetic Species, Reproductive Mode, and Specificity of the Green AlgaTrebouxiaForming Lichens with the Fungal GenusLetharia. The Bryologist, 103(4), 645-660. doi:10.1639/0007-2745(2000)103[0645:psrmas]2.0.co;2

Little, A. F. (2004). Flexibility in Algal Endosymbioses Shapes Growth in Reef Corals. Science, 304(5676), 1492-1494. doi:10.1126/science.1095733

Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462(7276), 1052-1055. doi:10.1038/nature08649

Muggia, L., Grube, M., & Tretiach, M. (2008). Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycological Progress, 7(3), 147-160. doi:10.1007/s11557-008-0560-6

Niyogi, K. K. (2004). Is PsbS the site of non-photochemical quenching in photosynthesis? Journal of Experimental Botany, 56(411), 375-382. doi:10.1093/jxb/eri056

O’Brien, H. E., Miadlikowska, J., & Lutzoni, F. (2005). Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungusPeltigera. European Journal of Phycology, 40(4), 363-378. doi:10.1080/09670260500342647

Ohmura, Y., Kawachi, M., Kasai, F., Watanabe, M. M., & Takeshita, S. (2006). Genetic combinations of symbionts in a vegetatively reproducing lichen,Parmotrema tinctorum, based on ITS rDNA sequences. The Bryologist, 109(1), 43-59. doi:10.1639/0007-2745(2006)109[0043:gcosia]2.0.co;2

Piercey-Normore, M. D. (2005). The lichen-forming ascomyceteEvernia mesomorphaassociates with multiple genotypes ofTrebouxia jamesii. New Phytologist, 169(2), 331-344. doi:10.1111/j.1469-8137.2005.01576.x

Pombert, J.-F., Lemieux, C., & Turmel, M. (2006). BMC Biology, 4(1), 3. doi:10.1186/1741-7007-4-3

Rambold, G., Friedl, T., & Beck, A. (1998). Photobionts in Lichens: Possible Indicators of Phylogenetic Relationships? The Bryologist, 101(3), 392. doi:10.1639/0007-2745(1998)101[392:pilpio]2.0.co;2

Romeike, J., Friedl, T., Helms, G., & Ott, S. (2002). Genetic Diversity of Algal and Fungal Partners in Four Species of Umbilicaria (Lichenized Ascomycetes) Along a Transect of the Antarctic Peninsula. Molecular Biology and Evolution, 19(8), 1209-1217. doi:10.1093/oxfordjournals.molbev.a004181

Rosenberg, E., Sharon, G., & Zilber-Rosenberg, I. (2009). The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environmental Microbiology, 11(12), 2959-2962. doi:10.1111/j.1462-2920.2009.01995.x

Schreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10(1-2), 51-62. doi:10.1007/bf00024185

Skaloud, P., & Peksa, O. (2010). Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution, 54(1), 36-46. doi:10.1016/j.ympev.2009.09.035

Wegley, L., Edwards, R., Rodriguez-Brito, B., Liu, H., & Rohwer, F. (2007). Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environmental Microbiology, 9(11), 2707-2719. doi:10.1111/j.1462-2920.2007.01383.x

Weis, E., & Berry, J. A. (1987). Quantum efficiency of Photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 894(2), 198-208. doi:10.1016/0005-2728(87)90190-3

Wornik, S., & Grube, M. (2009). Joint Dispersal Does Not Imply Maintenance of Partnerships in Lichen Symbioses. Microbial Ecology, 59(1), 150-157. doi:10.1007/s00248-009-9584-y

YAHR, R., VILGALYS, R., & DEPRIEST, P. T. (2004). Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology, 13(11), 3367-3378. doi:10.1111/j.1365-294x.2004.02350.x

Yahr, R., Vilgalys, R., & DePriest, P. T. (2006). Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist, 171(4), 847-860. doi:10.1111/j.1469-8137.2006.01792.x

Zoller, S. (2003). Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Molecular Phylogenetics and Evolution, 29(3), 629-640. doi:10.1016/s1055-7903(03)00215-x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem