Antonia, R. S. , Krishnamoorthy, L. V. , Fulachier, L. , Anselmet, F. & Benabid, T. 1986 Influence of wall suction on coherent structures in a turbulent boundary layer. In 9th Australasian Fluid Mechanics Conference, Auckland, Australia, pp. 346–349.
Klewicki, J. C. (2013). Self-similar mean dynamics in turbulent wall flows. Journal of Fluid Mechanics, 718, 596-621. doi:10.1017/jfm.2012.626
JOHNSTONE, R., COLEMAN, G. N., & SPALART, P. R. (2009). The resilience of the logarithmic law to pressure gradients: evidence from direct numerical simulation. Journal of Fluid Mechanics, 643, 163-175. doi:10.1017/s0022112009992333
[+]
Antonia, R. S. , Krishnamoorthy, L. V. , Fulachier, L. , Anselmet, F. & Benabid, T. 1986 Influence of wall suction on coherent structures in a turbulent boundary layer. In 9th Australasian Fluid Mechanics Conference, Auckland, Australia, pp. 346–349.
Klewicki, J. C. (2013). Self-similar mean dynamics in turbulent wall flows. Journal of Fluid Mechanics, 718, 596-621. doi:10.1017/jfm.2012.626
JOHNSTONE, R., COLEMAN, G. N., & SPALART, P. R. (2009). The resilience of the logarithmic law to pressure gradients: evidence from direct numerical simulation. Journal of Fluid Mechanics, 643, 163-175. doi:10.1017/s0022112009992333
Kraichnan, R. H. (1965). Lagrangian-History Closure Approximation for Turbulence. Physics of Fluids, 8(4), 575. doi:10.1063/1.1761271
Hanjalić, K., & Launder, B. E. (1972). A Reynolds stress model of turbulence and its application to thin shear flows. Journal of Fluid Mechanics, 52(4), 609-638. doi:10.1017/s002211207200268x
Keller, L. & Friedmann, A. 1924 Differentialgleichungen für die turbulente Bewegung einer kompressiblen Flüssigkeit. In Proc. First. Int. Congr. Appl. Mech., pp. 395–405.
Rosteck, A., & Oberlack, M. (2010). New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws. Discrete and Continuous Dynamical Systems - Series S, 3(3), 451-471. doi:10.3934/dcdss.2010.3.451
Drazin, P. G., & Riley, N. (2006). The Navier–Stokes equations. doi:10.1017/cbo9780511526459
LINDGREN, B., STERLUND, J. M., & JOHANSSON, A. V. (2004). Evaluation of scaling laws derived from Lie group symmetry methods in zero-pressure-gradient turbulent boundary layers. Journal of Fluid Mechanics, 502, 127-152. doi:10.1017/s0022112003007675
Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537-566. doi:10.1017/s0022112075001814
Chung, Y. M., & Sung, H. J. (2001). Initial Relaxation of Spatially Evolving Turbulent Channel Flow with Blowing and Suction. AIAA Journal, 39(11), 2091-2099. doi:10.2514/2.1232
Bluman, G. W., Cheviakov, A. F., & Anco, S. C. (2010). Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-0-387-68028-6
Vigdorovich, I., & Oberlack, M. (2008). Analytical study of turbulent Poiseuille flow with wall transpiration. Physics of Fluids, 20(5), 055102. doi:10.1063/1.2919111
Del Álamo, J. C., & Jiménez, J. (2003). Spectra of the very large anisotropic scales in turbulent channels. Physics of Fluids, 15(6), L41. doi:10.1063/1.1570830
KAMETANI, Y., & FUKAGATA, K. (2011). Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. Journal of Fluid Mechanics, 681, 154-172. doi:10.1017/jfm.2011.219
Hoyas, S., & Jiménez, J. (2006). Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003. Physics of Fluids, 18(1), 011702. doi:10.1063/1.2162185
Hanjalić, K., & Launder, B. E. (1972). Fully developed asymmetric flow in a plane channel. Journal of Fluid Mechanics, 51(2), 301-335. doi:10.1017/s0022112072001211
Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133-166. doi:10.1017/s0022112087000892
DEL LAMO, J. C., JIMNEZ, J., ZANDONADE, P., & MOSER, R. D. (2004). Scaling of the energy spectra of turbulent channels. Journal of Fluid Mechanics, 500, 135-144. doi:10.1017/s002211200300733x
Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103(1), 16-42. doi:10.1016/0021-9991(92)90324-r
Oberlack, M. 2000 Symmetrie, Invarianz und Selbstähnlichkeit in der Turbulenz. Habilitation thesis.
Millikan, C. B. 1939 A critical discussion of turbulent flows in channels and circular tubes. In Proc. Vth Int. Congr. Appl. Mech., pp. 386–392.
Tennekes, H. (1965). Similarity laws for turbulent boundary layers with suction or injection. Journal of Fluid Mechanics, 21(4), 689-703. doi:10.1017/s0022112065000423
Zhapbasbaev, U. K., & Isakhanova, G. Z. (1998). Developed turbulent flow in a plane channel with simultaneous injection through one porous wall and suction through the other. Journal of Applied Mechanics and Technical Physics, 39(1), 53-59. doi:10.1007/bf02467997
Chung, Y. M., Sung, H. J., & Krogstad, P.-A. (2002). Modulation of Near-Wall Turbulence Structure with Wall Blowing and Suction. AIAA Journal, 40(8), 1529-1535. doi:10.2514/2.1849
OBERLACK, M. (2001). A unified approach for symmetries in plane parallel turbulent shear flows. Journal of Fluid Mechanics, 427, 299-328. doi:10.1017/s0022112000002408
WOSNIK, M., CASTILLO, L., & GEORGE, W. K. (2000). A theory for turbulent pipe and channel flows. Journal of Fluid Mechanics, 421, 115-145. doi:10.1017/s0022112000001385
Jackson, P. S. (1981). On the displacement height in the logarithmic velocity profile. Journal of Fluid Mechanics, 111(-1), 15. doi:10.1017/s0022112081002279
Griffith, A. A. & Meredith, F. W. 1936 Possible improvement in aircraft performance due to use of boundary layer suction. Tech. Rep. 2315, Aero. Res. Counc., London.
WEI, T., FIFE, P., & KLEWICKI, J. (2007). On scaling the mean momentum balance and its solutions in turbulent Couette–Poiseuille flow. Journal of Fluid Mechanics, 573, 371-398. doi:10.1017/s0022112006003958
ROSTECK, A. M., & OBERLACK, M. (2011). LIE ALGEBRA OF THE SYMMETRIES OF THE MULTI-POINT EQUATIONS IN STATISTICAL TURBULENCE THEORY. Journal of Nonlinear Mathematical Physics, 18(sup1), 251-264. doi:10.1142/s1402925111001404
Stevenson, T. N. 1963b 1963b A modified velocity defect law for turbulent boundary layers with injection. Tech. Rep. 170 The College of Aeronautics Cranfield.
Black, T. J. & Sarnecki, A. J. 1958 The turbulent boundary layer with suction or injection. Tech. Rep. 20, Cambrige University, Engineering Department.
De Karman, T., & Howarth, L. (1938). On the Statistical Theory of Isotropic Turbulence. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 164(917), 192-215. doi:10.1098/rspa.1938.0013
Telbany, M. M. M. E., & Reynolds, A. J. (1981). Turbulence in plane channel flows. Journal of Fluid Mechanics, 111(-1), 283. doi:10.1017/s0022112081002395
NAKABAYASHI, K., KITOH, O., & KATOH, Y. (2004). Similarity laws of velocity profiles and turbulence characteristics of CouettePoiseuille turbulent flows. Journal of Fluid Mechanics, 507, 43-69. doi:10.1017/s0022112004008110
Wei, T., Klewicki, J., & Fife, P. (2009). Time averaging in turbulence settings may reveal an infinite hierarchy of length scales. Discrete and Continuous Dynamical Systems, 24(3), 781-807. doi:10.3934/dcds.2009.24.781
JIMÉNEZ, J., UHLMANN, M., PINELLI, A., & KAWAHARA, G. (2001). Turbulent shear flow over active and passive porous surfaces. Journal of Fluid Mechanics, 442, 89-117. doi:10.1017/s0022112001004888
Sumitani, Y., & Kasagi, N. (1995). Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA Journal, 33(7), 1220-1228. doi:10.2514/3.12363
[-]