- -

New scaling laws for turbulent Poiseuille flow with wall transpiration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New scaling laws for turbulent Poiseuille flow with wall transpiration

Mostrar el registro completo del ítem

Avsarkisov, V.; Oberlack, M.; Hoyas Calvo, S. (2014). New scaling laws for turbulent Poiseuille flow with wall transpiration. Journal of Fluid Mechanics. 746:99-122. https://doi.org/10.1017/jfm.2014.98

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60324

Ficheros en el ítem

Metadatos del ítem

Título: New scaling laws for turbulent Poiseuille flow with wall transpiration
Autor: Avsarkisov, V. Oberlack, M. Hoyas Calvo, Sergio
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics
Fecha difusión:
Resumen:
A fully developed, turbulent Poiseuille flow with wall transpiration, i.e. uniform blowing and suction on the lower and upper walls correspondingly, is investigated by both direct numerical simulation (DNS) of the ...[+]
Palabras clave: Turbulence simulation , Turbulence theory
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Fluid Mechanics. (issn: 0022-1120 )
DOI: 10.1017/jfm.2014.98
Editorial:
Cambridge University Press (CUP): STM Journals
Versión del editor: http://dx.doi.org/10.1017/jfm.2014.98
Código del Proyecto:
info:eu-repo/grantAgreement/DFG//KH 257%2F2-1/
Agradecimientos:
This work was supported by the DFG under the grant number KH 257/2-1 (2010). The computations were performed on the HHLR IBM Regatta supercomputer at TU Darmstadt, on the FUCHS cluster at the University of Frankfurt-am-Main ...[+]
Tipo: Artículo

References

Antonia, R. S. , Krishnamoorthy, L. V. , Fulachier, L. , Anselmet, F.  & Benabid, T. 1986 Influence of wall suction on coherent structures in a turbulent boundary layer. In 9th Australasian Fluid Mechanics Conference, Auckland, Australia, pp. 346–349.

Klewicki, J. C. (2013). Self-similar mean dynamics in turbulent wall flows. Journal of Fluid Mechanics, 718, 596-621. doi:10.1017/jfm.2012.626

JOHNSTONE, R., COLEMAN, G. N., & SPALART, P. R. (2009). The resilience of the logarithmic law to pressure gradients: evidence from direct numerical simulation. Journal of Fluid Mechanics, 643, 163-175. doi:10.1017/s0022112009992333 [+]
Antonia, R. S. , Krishnamoorthy, L. V. , Fulachier, L. , Anselmet, F.  & Benabid, T. 1986 Influence of wall suction on coherent structures in a turbulent boundary layer. In 9th Australasian Fluid Mechanics Conference, Auckland, Australia, pp. 346–349.

Klewicki, J. C. (2013). Self-similar mean dynamics in turbulent wall flows. Journal of Fluid Mechanics, 718, 596-621. doi:10.1017/jfm.2012.626

JOHNSTONE, R., COLEMAN, G. N., & SPALART, P. R. (2009). The resilience of the logarithmic law to pressure gradients: evidence from direct numerical simulation. Journal of Fluid Mechanics, 643, 163-175. doi:10.1017/s0022112009992333

Kraichnan, R. H. (1965). Lagrangian-History Closure Approximation for Turbulence. Physics of Fluids, 8(4), 575. doi:10.1063/1.1761271

Hanjalić, K., & Launder, B. E. (1972). A Reynolds stress model of turbulence and its application to thin shear flows. Journal of Fluid Mechanics, 52(4), 609-638. doi:10.1017/s002211207200268x

Keller, L.  & Friedmann, A. 1924 Differentialgleichungen für die turbulente Bewegung einer kompressiblen Flüssigkeit. In Proc. First. Int. Congr. Appl. Mech., pp. 395–405.

Rosteck, A., & Oberlack, M. (2010). New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws. Discrete and Continuous Dynamical Systems - Series S, 3(3), 451-471. doi:10.3934/dcdss.2010.3.451

Drazin, P. G., & Riley, N. (2006). The Navier–Stokes equations. doi:10.1017/cbo9780511526459

LINDGREN, B., STERLUND, J. M., & JOHANSSON, A. V. (2004). Evaluation of scaling laws derived from Lie group symmetry methods in zero-pressure-gradient turbulent boundary layers. Journal of Fluid Mechanics, 502, 127-152. doi:10.1017/s0022112003007675

Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537-566. doi:10.1017/s0022112075001814

Chung, Y. M., & Sung, H. J. (2001). Initial Relaxation of Spatially Evolving Turbulent Channel Flow with Blowing and Suction. AIAA Journal, 39(11), 2091-2099. doi:10.2514/2.1232

Bluman, G. W., Cheviakov, A. F., & Anco, S. C. (2010). Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-0-387-68028-6

Vigdorovich, I., & Oberlack, M. (2008). Analytical study of turbulent Poiseuille flow with wall transpiration. Physics of Fluids, 20(5), 055102. doi:10.1063/1.2919111

Del Álamo, J. C., & Jiménez, J. (2003). Spectra of the very large anisotropic scales in turbulent channels. Physics of Fluids, 15(6), L41. doi:10.1063/1.1570830

KAMETANI, Y., & FUKAGATA, K. (2011). Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. Journal of Fluid Mechanics, 681, 154-172. doi:10.1017/jfm.2011.219

Hoyas, S., & Jiménez, J. (2006). Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003. Physics of Fluids, 18(1), 011702. doi:10.1063/1.2162185

Hanjalić, K., & Launder, B. E. (1972). Fully developed asymmetric flow in a plane channel. Journal of Fluid Mechanics, 51(2), 301-335. doi:10.1017/s0022112072001211

Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133-166. doi:10.1017/s0022112087000892

DEL LAMO, J. C., JIMNEZ, J., ZANDONADE, P., & MOSER, R. D. (2004). Scaling of the energy spectra of turbulent channels. Journal of Fluid Mechanics, 500, 135-144. doi:10.1017/s002211200300733x

Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103(1), 16-42. doi:10.1016/0021-9991(92)90324-r

Oberlack, M. 2000 Symmetrie, Invarianz und Selbstähnlichkeit in der Turbulenz. Habilitation thesis.

Millikan, C. B. 1939 A critical discussion of turbulent flows in channels and circular tubes. In Proc. Vth Int. Congr. Appl. Mech., pp. 386–392.

Tennekes, H. (1965). Similarity laws for turbulent boundary layers with suction or injection. Journal of Fluid Mechanics, 21(4), 689-703. doi:10.1017/s0022112065000423

Zhapbasbaev, U. K., & Isakhanova, G. Z. (1998). Developed turbulent flow in a plane channel with simultaneous injection through one porous wall and suction through the other. Journal of Applied Mechanics and Technical Physics, 39(1), 53-59. doi:10.1007/bf02467997

Chung, Y. M., Sung, H. J., & Krogstad, P.-A. (2002). Modulation of Near-Wall Turbulence Structure with Wall Blowing and Suction. AIAA Journal, 40(8), 1529-1535. doi:10.2514/2.1849

OBERLACK, M. (2001). A unified approach for symmetries in plane parallel turbulent shear flows. Journal of Fluid Mechanics, 427, 299-328. doi:10.1017/s0022112000002408

WOSNIK, M., CASTILLO, L., & GEORGE, W. K. (2000). A theory for turbulent pipe and channel flows. Journal of Fluid Mechanics, 421, 115-145. doi:10.1017/s0022112000001385

Jackson, P. S. (1981). On the displacement height in the logarithmic velocity profile. Journal of Fluid Mechanics, 111(-1), 15. doi:10.1017/s0022112081002279

Griffith, A. A.  & Meredith, F. W. 1936 Possible improvement in aircraft performance due to use of boundary layer suction. Tech. Rep. 2315, Aero. Res. Counc., London.

WEI, T., FIFE, P., & KLEWICKI, J. (2007). On scaling the mean momentum balance and its solutions in turbulent Couette–Poiseuille flow. Journal of Fluid Mechanics, 573, 371-398. doi:10.1017/s0022112006003958

ROSTECK, A. M., & OBERLACK, M. (2011). LIE ALGEBRA OF THE SYMMETRIES OF THE MULTI-POINT EQUATIONS IN STATISTICAL TURBULENCE THEORY. Journal of Nonlinear Mathematical Physics, 18(sup1), 251-264. doi:10.1142/s1402925111001404

Stevenson, T. N. 1963b 1963b A modified velocity defect law for turbulent boundary layers with injection. Tech. Rep. 170 The College of Aeronautics Cranfield.

Black, T. J.  & Sarnecki, A. J. 1958 The turbulent boundary layer with suction or injection. Tech. Rep. 20, Cambrige University, Engineering Department.

De Karman, T., & Howarth, L. (1938). On the Statistical Theory of Isotropic Turbulence. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 164(917), 192-215. doi:10.1098/rspa.1938.0013

Telbany, M. M. M. E., & Reynolds, A. J. (1981). Turbulence in plane channel flows. Journal of Fluid Mechanics, 111(-1), 283. doi:10.1017/s0022112081002395

NAKABAYASHI, K., KITOH, O., & KATOH, Y. (2004). Similarity laws of velocity profiles and turbulence characteristics of CouettePoiseuille turbulent flows. Journal of Fluid Mechanics, 507, 43-69. doi:10.1017/s0022112004008110

Wei, T., Klewicki, J., & Fife, P. (2009). Time averaging in turbulence settings may reveal an infinite hierarchy of length scales. Discrete and Continuous Dynamical Systems, 24(3), 781-807. doi:10.3934/dcds.2009.24.781

JIMÉNEZ, J., UHLMANN, M., PINELLI, A., & KAWAHARA, G. (2001). Turbulent shear flow over active and passive porous surfaces. Journal of Fluid Mechanics, 442, 89-117. doi:10.1017/s0022112001004888

Sumitani, Y., & Kasagi, N. (1995). Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA Journal, 33(7), 1220-1228. doi:10.2514/3.12363

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem