- -

New scaling laws for turbulent Poiseuille flow with wall transpiration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New scaling laws for turbulent Poiseuille flow with wall transpiration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Avsarkisov, V. es_ES
dc.contributor.author Oberlack, M. es_ES
dc.contributor.author Hoyas Calvo, Sergio es_ES
dc.date.accessioned 2016-01-28T13:16:17Z
dc.date.available 2016-01-28T13:16:17Z
dc.date.issued 2014-05
dc.identifier.issn 0022-1120
dc.identifier.uri http://hdl.handle.net/10251/60324
dc.description.abstract A fully developed, turbulent Poiseuille flow with wall transpiration, i.e. uniform blowing and suction on the lower and upper walls correspondingly, is investigated by both direct numerical simulation (DNS) of the three-dimensional, incompressible Navier-Stokes equations and Lie symmetry analysis. The latter is used to find symmetry transformations and in turn to derive invariant solutions of the set of two- and multi-point correlation equations. We show that the transpiration velocity is a symmetry breaking which implies a logarithmic scaling law in the core of the channel. DNS validates this result of Lie symmetry analysis and hence aids establishing a new logarithmic law of deficit type. The region of validity of the new logarithmic law is very different from the usual near-wall log law and the slope constant in the core region differs from the von Karman constant and is equal to 0.3. Further, extended forms of the linear viscous sublayer law and the near-wall log law are also derived, which, as a particular case, include these laws for the classical non-transpiring case. The viscous sublayer at the suction side has an asymptotic suction profile. The thickness of the sublayer increase at high Reynolds and transpiration numbers. For the near-wall log law we see an indication that it appears at the moderate transpiration rates (0.05 < v(0)/u(tau) < 0.1) and only at the blowing wall. Finally, from the DNS data we establish a relation between the friction velocity u(tau) and the transpiration v(0) which turns out to be linear at moderate transpiration rates. es_ES
dc.description.sponsorship This work was supported by the DFG under the grant number KH 257/2-1 (2010). The computations were performed on the HHLR IBM Regatta supercomputer at TU Darmstadt, on the FUCHS cluster at the University of Frankfurt-am-Main and on the SuperMUC Petascale System at Leibniz Supercomputing Centre (LRZ). Special thanks are due to M. Rampp for providing us an account on the HP Visualization Cluster at the Rechenzentrum Garching (RZG) of the Max Planck Institute for Plasmaphysics (IPP) were we performed visualizations of the data. Finally, the authors would like to thank Y. Wang, M. Frewer and A. Rosteck for their valuable comments. en_EN
dc.language Inglés es_ES
dc.publisher Cambridge University Press (CUP): STM Journals es_ES
dc.relation.ispartof Journal of Fluid Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Turbulence simulation es_ES
dc.subject Turbulence theory es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title New scaling laws for turbulent Poiseuille flow with wall transpiration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/jfm.2014.98
dc.relation.projectID info:eu-repo/grantAgreement/DFG//KH 257%2F2-1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics es_ES
dc.description.bibliographicCitation Avsarkisov, V.; Oberlack, M.; Hoyas Calvo, S. (2014). New scaling laws for turbulent Poiseuille flow with wall transpiration. Journal of Fluid Mechanics. 746:99-122. https://doi.org/10.1017/jfm.2014.98 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1017/jfm.2014.98 es_ES
dc.description.upvformatpinicio 99 es_ES
dc.description.upvformatpfin 122 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 746 es_ES
dc.relation.senia 265444 es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.description.references Antonia, R. S. , Krishnamoorthy, L. V. , Fulachier, L. , Anselmet, F.  & Benabid, T. 1986 Influence of wall suction on coherent structures in a turbulent boundary layer. In 9th Australasian Fluid Mechanics Conference, Auckland, Australia, pp. 346–349. es_ES
dc.description.references Klewicki, J. C. (2013). Self-similar mean dynamics in turbulent wall flows. Journal of Fluid Mechanics, 718, 596-621. doi:10.1017/jfm.2012.626 es_ES
dc.description.references JOHNSTONE, R., COLEMAN, G. N., & SPALART, P. R. (2009). The resilience of the logarithmic law to pressure gradients: evidence from direct numerical simulation. Journal of Fluid Mechanics, 643, 163-175. doi:10.1017/s0022112009992333 es_ES
dc.description.references Kraichnan, R. H. (1965). Lagrangian-History Closure Approximation for Turbulence. Physics of Fluids, 8(4), 575. doi:10.1063/1.1761271 es_ES
dc.description.references Hanjalić, K., & Launder, B. E. (1972). A Reynolds stress model of turbulence and its application to thin shear flows. Journal of Fluid Mechanics, 52(4), 609-638. doi:10.1017/s002211207200268x es_ES
dc.description.references Keller, L.  & Friedmann, A. 1924 Differentialgleichungen für die turbulente Bewegung einer kompressiblen Flüssigkeit. In Proc. First. Int. Congr. Appl. Mech., pp. 395–405. es_ES
dc.description.references Rosteck, A., & Oberlack, M. (2010). New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws. Discrete and Continuous Dynamical Systems - Series S, 3(3), 451-471. doi:10.3934/dcdss.2010.3.451 es_ES
dc.description.references Drazin, P. G., & Riley, N. (2006). The Navier–Stokes equations. doi:10.1017/cbo9780511526459 es_ES
dc.description.references LINDGREN, B., STERLUND, J. M., & JOHANSSON, A. V. (2004). Evaluation of scaling laws derived from Lie group symmetry methods in zero-pressure-gradient turbulent boundary layers. Journal of Fluid Mechanics, 502, 127-152. doi:10.1017/s0022112003007675 es_ES
dc.description.references Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537-566. doi:10.1017/s0022112075001814 es_ES
dc.description.references Chung, Y. M., & Sung, H. J. (2001). Initial Relaxation of Spatially Evolving Turbulent Channel Flow with Blowing and Suction. AIAA Journal, 39(11), 2091-2099. doi:10.2514/2.1232 es_ES
dc.description.references Bluman, G. W., Cheviakov, A. F., & Anco, S. C. (2010). Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-0-387-68028-6 es_ES
dc.description.references Vigdorovich, I., & Oberlack, M. (2008). Analytical study of turbulent Poiseuille flow with wall transpiration. Physics of Fluids, 20(5), 055102. doi:10.1063/1.2919111 es_ES
dc.description.references Del Álamo, J. C., & Jiménez, J. (2003). Spectra of the very large anisotropic scales in turbulent channels. Physics of Fluids, 15(6), L41. doi:10.1063/1.1570830 es_ES
dc.description.references KAMETANI, Y., & FUKAGATA, K. (2011). Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. Journal of Fluid Mechanics, 681, 154-172. doi:10.1017/jfm.2011.219 es_ES
dc.description.references Hoyas, S., & Jiménez, J. (2006). Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003. Physics of Fluids, 18(1), 011702. doi:10.1063/1.2162185 es_ES
dc.description.references Hanjalić, K., & Launder, B. E. (1972). Fully developed asymmetric flow in a plane channel. Journal of Fluid Mechanics, 51(2), 301-335. doi:10.1017/s0022112072001211 es_ES
dc.description.references Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133-166. doi:10.1017/s0022112087000892 es_ES
dc.description.references DEL LAMO, J. C., JIMNEZ, J., ZANDONADE, P., & MOSER, R. D. (2004). Scaling of the energy spectra of turbulent channels. Journal of Fluid Mechanics, 500, 135-144. doi:10.1017/s002211200300733x es_ES
dc.description.references Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103(1), 16-42. doi:10.1016/0021-9991(92)90324-r es_ES
dc.description.references Oberlack, M. 2000 Symmetrie, Invarianz und Selbstähnlichkeit in der Turbulenz. Habilitation thesis. es_ES
dc.description.references Millikan, C. B. 1939 A critical discussion of turbulent flows in channels and circular tubes. In Proc. Vth Int. Congr. Appl. Mech., pp. 386–392. es_ES
dc.description.references Tennekes, H. (1965). Similarity laws for turbulent boundary layers with suction or injection. Journal of Fluid Mechanics, 21(4), 689-703. doi:10.1017/s0022112065000423 es_ES
dc.description.references Zhapbasbaev, U. K., & Isakhanova, G. Z. (1998). Developed turbulent flow in a plane channel with simultaneous injection through one porous wall and suction through the other. Journal of Applied Mechanics and Technical Physics, 39(1), 53-59. doi:10.1007/bf02467997 es_ES
dc.description.references Chung, Y. M., Sung, H. J., & Krogstad, P.-A. (2002). Modulation of Near-Wall Turbulence Structure with Wall Blowing and Suction. AIAA Journal, 40(8), 1529-1535. doi:10.2514/2.1849 es_ES
dc.description.references OBERLACK, M. (2001). A unified approach for symmetries in plane parallel turbulent shear flows. Journal of Fluid Mechanics, 427, 299-328. doi:10.1017/s0022112000002408 es_ES
dc.description.references WOSNIK, M., CASTILLO, L., & GEORGE, W. K. (2000). A theory for turbulent pipe and channel flows. Journal of Fluid Mechanics, 421, 115-145. doi:10.1017/s0022112000001385 es_ES
dc.description.references Jackson, P. S. (1981). On the displacement height in the logarithmic velocity profile. Journal of Fluid Mechanics, 111(-1), 15. doi:10.1017/s0022112081002279 es_ES
dc.description.references Griffith, A. A.  & Meredith, F. W. 1936 Possible improvement in aircraft performance due to use of boundary layer suction. Tech. Rep. 2315, Aero. Res. Counc., London. es_ES
dc.description.references WEI, T., FIFE, P., & KLEWICKI, J. (2007). On scaling the mean momentum balance and its solutions in turbulent Couette–Poiseuille flow. Journal of Fluid Mechanics, 573, 371-398. doi:10.1017/s0022112006003958 es_ES
dc.description.references ROSTECK, A. M., & OBERLACK, M. (2011). LIE ALGEBRA OF THE SYMMETRIES OF THE MULTI-POINT EQUATIONS IN STATISTICAL TURBULENCE THEORY. Journal of Nonlinear Mathematical Physics, 18(sup1), 251-264. doi:10.1142/s1402925111001404 es_ES
dc.description.references Stevenson, T. N. 1963b 1963b A modified velocity defect law for turbulent boundary layers with injection. Tech. Rep. 170 The College of Aeronautics Cranfield. es_ES
dc.description.references Black, T. J.  & Sarnecki, A. J. 1958 The turbulent boundary layer with suction or injection. Tech. Rep. 20, Cambrige University, Engineering Department. es_ES
dc.description.references De Karman, T., & Howarth, L. (1938). On the Statistical Theory of Isotropic Turbulence. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 164(917), 192-215. doi:10.1098/rspa.1938.0013 es_ES
dc.description.references Telbany, M. M. M. E., & Reynolds, A. J. (1981). Turbulence in plane channel flows. Journal of Fluid Mechanics, 111(-1), 283. doi:10.1017/s0022112081002395 es_ES
dc.description.references NAKABAYASHI, K., KITOH, O., & KATOH, Y. (2004). Similarity laws of velocity profiles and turbulence characteristics of CouettePoiseuille turbulent flows. Journal of Fluid Mechanics, 507, 43-69. doi:10.1017/s0022112004008110 es_ES
dc.description.references Wei, T., Klewicki, J., & Fife, P. (2009). Time averaging in turbulence settings may reveal an infinite hierarchy of length scales. Discrete and Continuous Dynamical Systems, 24(3), 781-807. doi:10.3934/dcds.2009.24.781 es_ES
dc.description.references JIMÉNEZ, J., UHLMANN, M., PINELLI, A., & KAWAHARA, G. (2001). Turbulent shear flow over active and passive porous surfaces. Journal of Fluid Mechanics, 442, 89-117. doi:10.1017/s0022112001004888 es_ES
dc.description.references Sumitani, Y., & Kasagi, N. (1995). Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA Journal, 33(7), 1220-1228. doi:10.2514/3.12363 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem