Mostrar el registro sencillo del ítem
dc.contributor.author | Avsarkisov, V. | es_ES |
dc.contributor.author | Oberlack, M. | es_ES |
dc.contributor.author | Hoyas Calvo, Sergio | es_ES |
dc.date.accessioned | 2016-01-28T13:16:17Z | |
dc.date.available | 2016-01-28T13:16:17Z | |
dc.date.issued | 2014-05 | |
dc.identifier.issn | 0022-1120 | |
dc.identifier.uri | http://hdl.handle.net/10251/60324 | |
dc.description.abstract | A fully developed, turbulent Poiseuille flow with wall transpiration, i.e. uniform blowing and suction on the lower and upper walls correspondingly, is investigated by both direct numerical simulation (DNS) of the three-dimensional, incompressible Navier-Stokes equations and Lie symmetry analysis. The latter is used to find symmetry transformations and in turn to derive invariant solutions of the set of two- and multi-point correlation equations. We show that the transpiration velocity is a symmetry breaking which implies a logarithmic scaling law in the core of the channel. DNS validates this result of Lie symmetry analysis and hence aids establishing a new logarithmic law of deficit type. The region of validity of the new logarithmic law is very different from the usual near-wall log law and the slope constant in the core region differs from the von Karman constant and is equal to 0.3. Further, extended forms of the linear viscous sublayer law and the near-wall log law are also derived, which, as a particular case, include these laws for the classical non-transpiring case. The viscous sublayer at the suction side has an asymptotic suction profile. The thickness of the sublayer increase at high Reynolds and transpiration numbers. For the near-wall log law we see an indication that it appears at the moderate transpiration rates (0.05 < v(0)/u(tau) < 0.1) and only at the blowing wall. Finally, from the DNS data we establish a relation between the friction velocity u(tau) and the transpiration v(0) which turns out to be linear at moderate transpiration rates. | es_ES |
dc.description.sponsorship | This work was supported by the DFG under the grant number KH 257/2-1 (2010). The computations were performed on the HHLR IBM Regatta supercomputer at TU Darmstadt, on the FUCHS cluster at the University of Frankfurt-am-Main and on the SuperMUC Petascale System at Leibniz Supercomputing Centre (LRZ). Special thanks are due to M. Rampp for providing us an account on the HP Visualization Cluster at the Rechenzentrum Garching (RZG) of the Max Planck Institute for Plasmaphysics (IPP) were we performed visualizations of the data. Finally, the authors would like to thank Y. Wang, M. Frewer and A. Rosteck for their valuable comments. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Cambridge University Press (CUP): STM Journals | es_ES |
dc.relation.ispartof | Journal of Fluid Mechanics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Turbulence simulation | es_ES |
dc.subject | Turbulence theory | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | New scaling laws for turbulent Poiseuille flow with wall transpiration | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1017/jfm.2014.98 | |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//KH 257%2F2-1/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Avsarkisov, V.; Oberlack, M.; Hoyas Calvo, S. (2014). New scaling laws for turbulent Poiseuille flow with wall transpiration. Journal of Fluid Mechanics. 746:99-122. https://doi.org/10.1017/jfm.2014.98 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1017/jfm.2014.98 | es_ES |
dc.description.upvformatpinicio | 99 | es_ES |
dc.description.upvformatpfin | 122 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 746 | es_ES |
dc.relation.senia | 265444 | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.description.references | Antonia, R. S. , Krishnamoorthy, L. V. , Fulachier, L. , Anselmet, F. & Benabid, T. 1986 Influence of wall suction on coherent structures in a turbulent boundary layer. In 9th Australasian Fluid Mechanics Conference, Auckland, Australia, pp. 346–349. | es_ES |
dc.description.references | Klewicki, J. C. (2013). Self-similar mean dynamics in turbulent wall flows. Journal of Fluid Mechanics, 718, 596-621. doi:10.1017/jfm.2012.626 | es_ES |
dc.description.references | JOHNSTONE, R., COLEMAN, G. N., & SPALART, P. R. (2009). The resilience of the logarithmic law to pressure gradients: evidence from direct numerical simulation. Journal of Fluid Mechanics, 643, 163-175. doi:10.1017/s0022112009992333 | es_ES |
dc.description.references | Kraichnan, R. H. (1965). Lagrangian-History Closure Approximation for Turbulence. Physics of Fluids, 8(4), 575. doi:10.1063/1.1761271 | es_ES |
dc.description.references | Hanjalić, K., & Launder, B. E. (1972). A Reynolds stress model of turbulence and its application to thin shear flows. Journal of Fluid Mechanics, 52(4), 609-638. doi:10.1017/s002211207200268x | es_ES |
dc.description.references | Keller, L. & Friedmann, A. 1924 Differentialgleichungen für die turbulente Bewegung einer kompressiblen Flüssigkeit. In Proc. First. Int. Congr. Appl. Mech., pp. 395–405. | es_ES |
dc.description.references | Rosteck, A., & Oberlack, M. (2010). New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws. Discrete and Continuous Dynamical Systems - Series S, 3(3), 451-471. doi:10.3934/dcdss.2010.3.451 | es_ES |
dc.description.references | Drazin, P. G., & Riley, N. (2006). The Navier–Stokes equations. doi:10.1017/cbo9780511526459 | es_ES |
dc.description.references | LINDGREN, B., STERLUND, J. M., & JOHANSSON, A. V. (2004). Evaluation of scaling laws derived from Lie group symmetry methods in zero-pressure-gradient turbulent boundary layers. Journal of Fluid Mechanics, 502, 127-152. doi:10.1017/s0022112003007675 | es_ES |
dc.description.references | Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537-566. doi:10.1017/s0022112075001814 | es_ES |
dc.description.references | Chung, Y. M., & Sung, H. J. (2001). Initial Relaxation of Spatially Evolving Turbulent Channel Flow with Blowing and Suction. AIAA Journal, 39(11), 2091-2099. doi:10.2514/2.1232 | es_ES |
dc.description.references | Bluman, G. W., Cheviakov, A. F., & Anco, S. C. (2010). Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-0-387-68028-6 | es_ES |
dc.description.references | Vigdorovich, I., & Oberlack, M. (2008). Analytical study of turbulent Poiseuille flow with wall transpiration. Physics of Fluids, 20(5), 055102. doi:10.1063/1.2919111 | es_ES |
dc.description.references | Del Álamo, J. C., & Jiménez, J. (2003). Spectra of the very large anisotropic scales in turbulent channels. Physics of Fluids, 15(6), L41. doi:10.1063/1.1570830 | es_ES |
dc.description.references | KAMETANI, Y., & FUKAGATA, K. (2011). Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. Journal of Fluid Mechanics, 681, 154-172. doi:10.1017/jfm.2011.219 | es_ES |
dc.description.references | Hoyas, S., & Jiménez, J. (2006). Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003. Physics of Fluids, 18(1), 011702. doi:10.1063/1.2162185 | es_ES |
dc.description.references | Hanjalić, K., & Launder, B. E. (1972). Fully developed asymmetric flow in a plane channel. Journal of Fluid Mechanics, 51(2), 301-335. doi:10.1017/s0022112072001211 | es_ES |
dc.description.references | Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133-166. doi:10.1017/s0022112087000892 | es_ES |
dc.description.references | DEL LAMO, J. C., JIMNEZ, J., ZANDONADE, P., & MOSER, R. D. (2004). Scaling of the energy spectra of turbulent channels. Journal of Fluid Mechanics, 500, 135-144. doi:10.1017/s002211200300733x | es_ES |
dc.description.references | Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103(1), 16-42. doi:10.1016/0021-9991(92)90324-r | es_ES |
dc.description.references | Oberlack, M. 2000 Symmetrie, Invarianz und Selbstähnlichkeit in der Turbulenz. Habilitation thesis. | es_ES |
dc.description.references | Millikan, C. B. 1939 A critical discussion of turbulent flows in channels and circular tubes. In Proc. Vth Int. Congr. Appl. Mech., pp. 386–392. | es_ES |
dc.description.references | Tennekes, H. (1965). Similarity laws for turbulent boundary layers with suction or injection. Journal of Fluid Mechanics, 21(4), 689-703. doi:10.1017/s0022112065000423 | es_ES |
dc.description.references | Zhapbasbaev, U. K., & Isakhanova, G. Z. (1998). Developed turbulent flow in a plane channel with simultaneous injection through one porous wall and suction through the other. Journal of Applied Mechanics and Technical Physics, 39(1), 53-59. doi:10.1007/bf02467997 | es_ES |
dc.description.references | Chung, Y. M., Sung, H. J., & Krogstad, P.-A. (2002). Modulation of Near-Wall Turbulence Structure with Wall Blowing and Suction. AIAA Journal, 40(8), 1529-1535. doi:10.2514/2.1849 | es_ES |
dc.description.references | OBERLACK, M. (2001). A unified approach for symmetries in plane parallel turbulent shear flows. Journal of Fluid Mechanics, 427, 299-328. doi:10.1017/s0022112000002408 | es_ES |
dc.description.references | WOSNIK, M., CASTILLO, L., & GEORGE, W. K. (2000). A theory for turbulent pipe and channel flows. Journal of Fluid Mechanics, 421, 115-145. doi:10.1017/s0022112000001385 | es_ES |
dc.description.references | Jackson, P. S. (1981). On the displacement height in the logarithmic velocity profile. Journal of Fluid Mechanics, 111(-1), 15. doi:10.1017/s0022112081002279 | es_ES |
dc.description.references | Griffith, A. A. & Meredith, F. W. 1936 Possible improvement in aircraft performance due to use of boundary layer suction. Tech. Rep. 2315, Aero. Res. Counc., London. | es_ES |
dc.description.references | WEI, T., FIFE, P., & KLEWICKI, J. (2007). On scaling the mean momentum balance and its solutions in turbulent Couette–Poiseuille flow. Journal of Fluid Mechanics, 573, 371-398. doi:10.1017/s0022112006003958 | es_ES |
dc.description.references | ROSTECK, A. M., & OBERLACK, M. (2011). LIE ALGEBRA OF THE SYMMETRIES OF THE MULTI-POINT EQUATIONS IN STATISTICAL TURBULENCE THEORY. Journal of Nonlinear Mathematical Physics, 18(sup1), 251-264. doi:10.1142/s1402925111001404 | es_ES |
dc.description.references | Stevenson, T. N. 1963b 1963b A modified velocity defect law for turbulent boundary layers with injection. Tech. Rep. 170 The College of Aeronautics Cranfield. | es_ES |
dc.description.references | Black, T. J. & Sarnecki, A. J. 1958 The turbulent boundary layer with suction or injection. Tech. Rep. 20, Cambrige University, Engineering Department. | es_ES |
dc.description.references | De Karman, T., & Howarth, L. (1938). On the Statistical Theory of Isotropic Turbulence. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 164(917), 192-215. doi:10.1098/rspa.1938.0013 | es_ES |
dc.description.references | Telbany, M. M. M. E., & Reynolds, A. J. (1981). Turbulence in plane channel flows. Journal of Fluid Mechanics, 111(-1), 283. doi:10.1017/s0022112081002395 | es_ES |
dc.description.references | NAKABAYASHI, K., KITOH, O., & KATOH, Y. (2004). Similarity laws of velocity profiles and turbulence characteristics of CouettePoiseuille turbulent flows. Journal of Fluid Mechanics, 507, 43-69. doi:10.1017/s0022112004008110 | es_ES |
dc.description.references | Wei, T., Klewicki, J., & Fife, P. (2009). Time averaging in turbulence settings may reveal an infinite hierarchy of length scales. Discrete and Continuous Dynamical Systems, 24(3), 781-807. doi:10.3934/dcds.2009.24.781 | es_ES |
dc.description.references | JIMÉNEZ, J., UHLMANN, M., PINELLI, A., & KAWAHARA, G. (2001). Turbulent shear flow over active and passive porous surfaces. Journal of Fluid Mechanics, 442, 89-117. doi:10.1017/s0022112001004888 | es_ES |
dc.description.references | Sumitani, Y., & Kasagi, N. (1995). Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA Journal, 33(7), 1220-1228. doi:10.2514/3.12363 | es_ES |