Mostrar el registro sencillo del ítem
dc.contributor.author | Balaguer Beser, Ángel Antonio | es_ES |
dc.date.accessioned | 2016-01-28T15:57:02Z | |
dc.date.available | 2016-01-28T15:57:02Z | |
dc.date.issued | 2011-07-01 | |
dc.identifier.issn | 0029-5981 | |
dc.identifier.uri | http://hdl.handle.net/10251/60339 | |
dc.description.abstract | This paper presents a new point value reconstruction algorithm based on average values or flux values for central Runge-Kutta schemes in the resolution of hyperbolic conservation laws. This reconstruction employs a fourth-order accurate approximation of point values of the solution at the two extrema and at the mid-point of each cell. These point values are modified in order to enforce monotonicity and shape preserving properties. This correction has been applied essentially in the cells close to the maxima and minima of the solution and in these cases, it has been proven that the reconstruction is fourth-order accurate. In the cells with a maximum or minimum of the solution, a correction has also been applied to such point values with the aim of ensuring that the resulting numerical solution has a non-oscillatory behavior. Several standard one- and two-dimensional test cases are used to verify high-order accuracy, non-oscillatory behavior and high-resolution properties for smooth and discontinuous solutions, and also in their componentwise extension to the Euler gas dynamics equations. © 2011 John Wiley & Sons, Ltd. | es_ES |
dc.description.sponsorship | I express my gratitude to the anonymous reviewers for their helpful comments. I thank Txomin Hermosilla for his suggestions. I thank the R & D & I Linguistic Assistance Office, Universidad Politecnica de Valencia (Spain), for translating this paper. This work is supported by Spanish Ministry of Education and Science under grant number CGL2009-14220-C02-01. This work was partially funded by the PAID-06-10 of the Polytechnic University of Valencia. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley: 12 months | es_ES |
dc.relation.ispartof | International Journal for Numerical Methods in Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Central schemes | es_ES |
dc.subject | High-order | es_ES |
dc.subject | Hyperbolic conservation laws | es_ES |
dc.subject | Non-oscillatory | es_ES |
dc.subject | Reconstruction | es_ES |
dc.subject | Central scheme | es_ES |
dc.subject | Euler equations | es_ES |
dc.subject | Runge Kutta methods | es_ES |
dc.subject | Physical properties | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A new reconstruction procedure in central schemes for hyperbolic conservation laws | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/nme.3105 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2009-14220-C02-01/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-10/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Balaguer Beser, ÁA. (2011). A new reconstruction procedure in central schemes for hyperbolic conservation laws. International Journal for Numerical Methods in Engineering. 86(13):1481-1506. https://doi.org/10.1002/nme.3105 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/nme.3105 | es_ES |
dc.description.upvformatpinicio | 1481 | es_ES |
dc.description.upvformatpfin | 1506 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 86 | es_ES |
dc.description.issue | 13 | es_ES |
dc.relation.senia | 40157 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Friedrichs, K. O., & Lax, P. D. (1971). Systems of Conservation Equations with a Convex Extension. Proceedings of the National Academy of Sciences, 68(8), 1686-1688. doi:10.1073/pnas.68.8.1686 | es_ES |
dc.description.references | Nessyahu, H., & Tadmor, E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws. Journal of Computational Physics, 87(2), 408-463. doi:10.1016/0021-9991(90)90260-8 | es_ES |
dc.description.references | Jiang, G.-S., & Tadmor, E. (1998). Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM Journal on Scientific Computing, 19(6), 1892-1917. doi:10.1137/s106482759631041x | es_ES |
dc.description.references | Kurganov, A., & Tadmor, E. (2000). New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations. Journal of Computational Physics, 160(1), 241-282. doi:10.1006/jcph.2000.6459 | es_ES |
dc.description.references | Liu, Y. (2005). Central schemes on overlapping cells. Journal of Computational Physics, 209(1), 82-104. doi:10.1016/j.jcp.2005.03.014 | es_ES |
dc.description.references | Jiang, G. S., Levy, D., Lin, C. T., Osher, S., & Tadmor, E. (1998). High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 35(6), 2147-2168. doi:10.1137/s0036142997317560 | es_ES |
dc.description.references | Bianco, F., Puppo, G., & Russo, G. (1999). High-Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM Journal on Scientific Computing, 21(1), 294-322. doi:10.1137/s1064827597324998 | es_ES |
dc.description.references | Harten, A., Engquist, B., Osher, S., & Chakravarthy, S. R. (1987). Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 71(2), 231-303. doi:10.1016/0021-9991(87)90031-3 | es_ES |
dc.description.references | Levy, D., Puppo, G., & Russo, G. (1999). Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 33(3), 547-571. doi:10.1051/m2an:1999152 | es_ES |
dc.description.references | Levy, D., Puppo, G., & Russo, G. (2002). A Fourth-Order Central WENO Scheme for Multidimensional Hyperbolic Systems of Conservation Laws. SIAM Journal on Scientific Computing, 24(2), 480-506. doi:10.1137/s1064827501385852 | es_ES |
dc.description.references | Liu, X.-D., Osher, S., & Chan, T. (1994). Weighted Essentially Non-oscillatory Schemes. Journal of Computational Physics, 115(1), 200-212. doi:10.1006/jcph.1994.1187 | es_ES |
dc.description.references | Zennaro, M. (1986). Natural continuous extensions of Runge-Kutta methods. Mathematics of Computation, 46(173), 119-119. doi:10.1090/s0025-5718-1986-0815835-1 | es_ES |
dc.description.references | Jiang, G.-S., & Shu, C.-W. (1996). Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics, 126(1), 202-228. doi:10.1006/jcph.1996.0130 | es_ES |
dc.description.references | Balsara, D. S., & Shu, C.-W. (2000). Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy. Journal of Computational Physics, 160(2), 405-452. doi:10.1006/jcph.2000.6443 | es_ES |
dc.description.references | Caleffi, V., Valiani, A., & Bernini, A. (2006). Fourth-order balanced source term treatment in central WENO schemes for shallow water equations. Journal of Computational Physics, 218(1), 228-245. doi:10.1016/j.jcp.2006.02.001 | es_ES |
dc.description.references | Balaguer, Á., & Conde, C. (2005). Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 43(2), 455-473. doi:10.1137/s0036142903437106 | es_ES |
dc.description.references | Liu, X.-D., & Osher, S. (1996). Nonoscillatory High Order Accurate Self-Similar Maximum Principle Satisfying Shock Capturing Schemes I. SIAM Journal on Numerical Analysis, 33(2), 760-779. doi:10.1137/0733038 | es_ES |
dc.description.references | Liu, X.-D., & Tadmor, E. (1998). Third order nonoscillatory central scheme for hyperbolic conservation laws. Numerische Mathematik, 79(3), 397-425. doi:10.1007/s002110050345 | es_ES |
dc.description.references | Peer, A. A. I., Gopaul, A., Dauhoo, M. Z., & Bhuruth, M. (2008). A new fourth-order non-oscillatory central scheme for hyperbolic conservation laws. Applied Numerical Mathematics, 58(5), 674-688. doi:10.1016/j.apnum.2007.02.004 | es_ES |
dc.description.references | Pareschi, L., Puppo, G., & Russo, G. (2005). Central Runge--Kutta Schemes for Conservation Laws. SIAM Journal on Scientific Computing, 26(3), 979-999. doi:10.1137/s1064827503420696 | es_ES |
dc.description.references | Dehghan, M., & Jazlanian, R. (2009). A fourth-order central Runge-Kutta scheme for hyperbolic conservation laws. Numerical Methods for Partial Differential Equations, NA-NA. doi:10.1002/num.20530 | es_ES |
dc.description.references | Balaguer, A., Conde, C., López, J. A., & Martínez, V. (2001). A finite volume method with a modified ENO scheme using a Hermite interpolation to solve advection diffusion equations. International Journal for Numerical Methods in Engineering, 50(10), 2339-2371. doi:10.1002/nme.123 | es_ES |
dc.description.references | Fernández-Nieto, E. D., & Martínez, V. (2007). A treatment of discontinuities for nonlinear systems with linearly degenerate fields. Computers & Fluids, 36(5), 987-1003. doi:10.1016/j.compfluid.2006.08.003 | es_ES |
dc.description.references | Qiu, J., & Shu, C.-W. (2002). On the Construction, Comparison, and Local Characteristic Decomposition for High-Order Central WENO Schemes. Journal of Computational Physics, 183(1), 187-209. doi:10.1006/jcph.2002.7191 | es_ES |
dc.description.references | Sod, G. A. (1978). A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1), 1-31. doi:10.1016/0021-9991(78)90023-2 | es_ES |
dc.description.references | Lax, P. D. (1954). Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 7(1), 159-193. doi:10.1002/cpa.3160070112 | es_ES |
dc.description.references | Zhou, Y. C., & Wei, G. W. (2003). High resolution conjugate filters for the simulation of flows. Journal of Computational Physics, 189(1), 159-179. doi:10.1016/s0021-9991(03)00206-7 | es_ES |
dc.description.references | Garnier, E., Sagaut, P., & Deville, M. (2001). A Class of Explicit ENO Filters with Application to Unsteady Flows. Journal of Computational Physics, 170(1), 184-204. doi:10.1006/jcph.2001.6732 | es_ES |
dc.description.references | Zhou, Y. C., Gu, Y., & Wei, G. W. (2003). Shock-capturing with natural high-frequency oscillations. International Journal for Numerical Methods in Fluids, 41(12), 1319-1338. doi:10.1002/fld.449 | es_ES |
dc.description.references | Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P., & Caruelle, B. (2000). High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes: Application to Compressible Flows. Journal of Computational Physics, 161(1), 114-139. doi:10.1006/jcph.2000.6492 | es_ES |
dc.description.references | Shu, C.-W. (1990). Numerical experiments on the accuracy of ENO and modified ENO schemes. Journal of Scientific Computing, 5(2), 127-149. doi:10.1007/bf01065581 | es_ES |
dc.description.references | Sun, Y., Zhou, Y. C., Li, S.-G., & Wei, G. W. (2006). A windowed Fourier pseudospectral method for hyperbolic conservation laws. Journal of Computational Physics, 214(2), 466-490. doi:10.1016/j.jcp.2005.09.027 | es_ES |
dc.description.references | Shu CW Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws 1997 | es_ES |