- -

A new reconstruction procedure in central schemes for hyperbolic conservation laws

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new reconstruction procedure in central schemes for hyperbolic conservation laws

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balaguer Beser, Ángel Antonio es_ES
dc.date.accessioned 2016-01-28T15:57:02Z
dc.date.available 2016-01-28T15:57:02Z
dc.date.issued 2011-07-01
dc.identifier.issn 0029-5981
dc.identifier.uri http://hdl.handle.net/10251/60339
dc.description.abstract This paper presents a new point value reconstruction algorithm based on average values or flux values for central Runge-Kutta schemes in the resolution of hyperbolic conservation laws. This reconstruction employs a fourth-order accurate approximation of point values of the solution at the two extrema and at the mid-point of each cell. These point values are modified in order to enforce monotonicity and shape preserving properties. This correction has been applied essentially in the cells close to the maxima and minima of the solution and in these cases, it has been proven that the reconstruction is fourth-order accurate. In the cells with a maximum or minimum of the solution, a correction has also been applied to such point values with the aim of ensuring that the resulting numerical solution has a non-oscillatory behavior. Several standard one- and two-dimensional test cases are used to verify high-order accuracy, non-oscillatory behavior and high-resolution properties for smooth and discontinuous solutions, and also in their componentwise extension to the Euler gas dynamics equations. © 2011 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship I express my gratitude to the anonymous reviewers for their helpful comments. I thank Txomin Hermosilla for his suggestions. I thank the R & D & I Linguistic Assistance Office, Universidad Politecnica de Valencia (Spain), for translating this paper. This work is supported by Spanish Ministry of Education and Science under grant number CGL2009-14220-C02-01. This work was partially funded by the PAID-06-10 of the Polytechnic University of Valencia. en_EN
dc.language Inglés es_ES
dc.publisher Wiley: 12 months es_ES
dc.relation.ispartof International Journal for Numerical Methods in Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Central schemes es_ES
dc.subject High-order es_ES
dc.subject Hyperbolic conservation laws es_ES
dc.subject Non-oscillatory es_ES
dc.subject Reconstruction es_ES
dc.subject Central scheme es_ES
dc.subject Euler equations es_ES
dc.subject Runge Kutta methods es_ES
dc.subject Physical properties es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A new reconstruction procedure in central schemes for hyperbolic conservation laws es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/nme.3105
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2009-14220-C02-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-10/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Balaguer Beser, ÁA. (2011). A new reconstruction procedure in central schemes for hyperbolic conservation laws. International Journal for Numerical Methods in Engineering. 86(13):1481-1506. https://doi.org/10.1002/nme.3105 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/nme.3105 es_ES
dc.description.upvformatpinicio 1481 es_ES
dc.description.upvformatpfin 1506 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 86 es_ES
dc.description.issue 13 es_ES
dc.relation.senia 40157 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Friedrichs, K. O., & Lax, P. D. (1971). Systems of Conservation Equations with a Convex Extension. Proceedings of the National Academy of Sciences, 68(8), 1686-1688. doi:10.1073/pnas.68.8.1686 es_ES
dc.description.references Nessyahu, H., & Tadmor, E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws. Journal of Computational Physics, 87(2), 408-463. doi:10.1016/0021-9991(90)90260-8 es_ES
dc.description.references Jiang, G.-S., & Tadmor, E. (1998). Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM Journal on Scientific Computing, 19(6), 1892-1917. doi:10.1137/s106482759631041x es_ES
dc.description.references Kurganov, A., & Tadmor, E. (2000). New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations. Journal of Computational Physics, 160(1), 241-282. doi:10.1006/jcph.2000.6459 es_ES
dc.description.references Liu, Y. (2005). Central schemes on overlapping cells. Journal of Computational Physics, 209(1), 82-104. doi:10.1016/j.jcp.2005.03.014 es_ES
dc.description.references Jiang, G. S., Levy, D., Lin, C. T., Osher, S., & Tadmor, E. (1998). High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 35(6), 2147-2168. doi:10.1137/s0036142997317560 es_ES
dc.description.references Bianco, F., Puppo, G., & Russo, G. (1999). High-Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM Journal on Scientific Computing, 21(1), 294-322. doi:10.1137/s1064827597324998 es_ES
dc.description.references Harten, A., Engquist, B., Osher, S., & Chakravarthy, S. R. (1987). Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 71(2), 231-303. doi:10.1016/0021-9991(87)90031-3 es_ES
dc.description.references Levy, D., Puppo, G., & Russo, G. (1999). Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 33(3), 547-571. doi:10.1051/m2an:1999152 es_ES
dc.description.references Levy, D., Puppo, G., & Russo, G. (2002). A Fourth-Order Central WENO Scheme for Multidimensional Hyperbolic Systems of Conservation Laws. SIAM Journal on Scientific Computing, 24(2), 480-506. doi:10.1137/s1064827501385852 es_ES
dc.description.references Liu, X.-D., Osher, S., & Chan, T. (1994). Weighted Essentially Non-oscillatory Schemes. Journal of Computational Physics, 115(1), 200-212. doi:10.1006/jcph.1994.1187 es_ES
dc.description.references Zennaro, M. (1986). Natural continuous extensions of Runge-Kutta methods. Mathematics of Computation, 46(173), 119-119. doi:10.1090/s0025-5718-1986-0815835-1 es_ES
dc.description.references Jiang, G.-S., & Shu, C.-W. (1996). Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics, 126(1), 202-228. doi:10.1006/jcph.1996.0130 es_ES
dc.description.references Balsara, D. S., & Shu, C.-W. (2000). Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy. Journal of Computational Physics, 160(2), 405-452. doi:10.1006/jcph.2000.6443 es_ES
dc.description.references Caleffi, V., Valiani, A., & Bernini, A. (2006). Fourth-order balanced source term treatment in central WENO schemes for shallow water equations. Journal of Computational Physics, 218(1), 228-245. doi:10.1016/j.jcp.2006.02.001 es_ES
dc.description.references Balaguer, Á., & Conde, C. (2005). Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 43(2), 455-473. doi:10.1137/s0036142903437106 es_ES
dc.description.references Liu, X.-D., & Osher, S. (1996). Nonoscillatory High Order Accurate Self-Similar Maximum Principle Satisfying Shock Capturing Schemes I. SIAM Journal on Numerical Analysis, 33(2), 760-779. doi:10.1137/0733038 es_ES
dc.description.references Liu, X.-D., & Tadmor, E. (1998). Third order nonoscillatory central scheme for hyperbolic conservation laws. Numerische Mathematik, 79(3), 397-425. doi:10.1007/s002110050345 es_ES
dc.description.references Peer, A. A. I., Gopaul, A., Dauhoo, M. Z., & Bhuruth, M. (2008). A new fourth-order non-oscillatory central scheme for hyperbolic conservation laws. Applied Numerical Mathematics, 58(5), 674-688. doi:10.1016/j.apnum.2007.02.004 es_ES
dc.description.references Pareschi, L., Puppo, G., & Russo, G. (2005). Central Runge--Kutta Schemes for Conservation Laws. SIAM Journal on Scientific Computing, 26(3), 979-999. doi:10.1137/s1064827503420696 es_ES
dc.description.references Dehghan, M., & Jazlanian, R. (2009). A fourth-order central Runge-Kutta scheme for hyperbolic conservation laws. Numerical Methods for Partial Differential Equations, NA-NA. doi:10.1002/num.20530 es_ES
dc.description.references Balaguer, A., Conde, C., López, J. A., & Martínez, V. (2001). A finite volume method with a modified ENO scheme using a Hermite interpolation to solve advection diffusion equations. International Journal for Numerical Methods in Engineering, 50(10), 2339-2371. doi:10.1002/nme.123 es_ES
dc.description.references Fernández-Nieto, E. D., & Martínez, V. (2007). A treatment of discontinuities for nonlinear systems with linearly degenerate fields. Computers & Fluids, 36(5), 987-1003. doi:10.1016/j.compfluid.2006.08.003 es_ES
dc.description.references Qiu, J., & Shu, C.-W. (2002). On the Construction, Comparison, and Local Characteristic Decomposition for High-Order Central WENO Schemes. Journal of Computational Physics, 183(1), 187-209. doi:10.1006/jcph.2002.7191 es_ES
dc.description.references Sod, G. A. (1978). A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1), 1-31. doi:10.1016/0021-9991(78)90023-2 es_ES
dc.description.references Lax, P. D. (1954). Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 7(1), 159-193. doi:10.1002/cpa.3160070112 es_ES
dc.description.references Zhou, Y. C., & Wei, G. W. (2003). High resolution conjugate filters for the simulation of flows. Journal of Computational Physics, 189(1), 159-179. doi:10.1016/s0021-9991(03)00206-7 es_ES
dc.description.references Garnier, E., Sagaut, P., & Deville, M. (2001). A Class of Explicit ENO Filters with Application to Unsteady Flows. Journal of Computational Physics, 170(1), 184-204. doi:10.1006/jcph.2001.6732 es_ES
dc.description.references Zhou, Y. C., Gu, Y., & Wei, G. W. (2003). Shock-capturing with natural high-frequency oscillations. International Journal for Numerical Methods in Fluids, 41(12), 1319-1338. doi:10.1002/fld.449 es_ES
dc.description.references Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P., & Caruelle, B. (2000). High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes: Application to Compressible Flows. Journal of Computational Physics, 161(1), 114-139. doi:10.1006/jcph.2000.6492 es_ES
dc.description.references Shu, C.-W. (1990). Numerical experiments on the accuracy of ENO and modified ENO schemes. Journal of Scientific Computing, 5(2), 127-149. doi:10.1007/bf01065581 es_ES
dc.description.references Sun, Y., Zhou, Y. C., Li, S.-G., & Wei, G. W. (2006). A windowed Fourier pseudospectral method for hyperbolic conservation laws. Journal of Computational Physics, 214(2), 466-490. doi:10.1016/j.jcp.2005.09.027 es_ES
dc.description.references Shu CW Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws 1997 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem