- -

A new reconstruction procedure in central schemes for hyperbolic conservation laws

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new reconstruction procedure in central schemes for hyperbolic conservation laws

Mostrar el registro completo del ítem

Balaguer Beser, ÁA. (2011). A new reconstruction procedure in central schemes for hyperbolic conservation laws. International Journal for Numerical Methods in Engineering. 86(13):1481-1506. https://doi.org/10.1002/nme.3105

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60339

Ficheros en el ítem

Metadatos del ítem

Título: A new reconstruction procedure in central schemes for hyperbolic conservation laws
Autor: Balaguer Beser, Ángel Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
This paper presents a new point value reconstruction algorithm based on average values or flux values for central Runge-Kutta schemes in the resolution of hyperbolic conservation laws. This reconstruction employs a ...[+]
Palabras clave: Central schemes , High-order , Hyperbolic conservation laws , Non-oscillatory , Reconstruction , Central scheme , Euler equations , Runge Kutta methods , Physical properties
Derechos de uso: Cerrado
Fuente:
International Journal for Numerical Methods in Engineering. (issn: 0029-5981 )
DOI: 10.1002/nme.3105
Editorial:
Wiley: 12 months
Versión del editor: http://dx.doi.org/10.1002/nme.3105
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CGL2009-14220-C02-01/
info:eu-repo/grantAgreement/UPV//PAID-06-10/
Agradecimientos:
I express my gratitude to the anonymous reviewers for their helpful comments. I thank Txomin Hermosilla for his suggestions. I thank the R & D & I Linguistic Assistance Office, Universidad Politecnica de Valencia (Spain), ...[+]
Tipo: Artículo

References

Friedrichs, K. O., & Lax, P. D. (1971). Systems of Conservation Equations with a Convex Extension. Proceedings of the National Academy of Sciences, 68(8), 1686-1688. doi:10.1073/pnas.68.8.1686

Nessyahu, H., & Tadmor, E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws. Journal of Computational Physics, 87(2), 408-463. doi:10.1016/0021-9991(90)90260-8

Jiang, G.-S., & Tadmor, E. (1998). Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM Journal on Scientific Computing, 19(6), 1892-1917. doi:10.1137/s106482759631041x [+]
Friedrichs, K. O., & Lax, P. D. (1971). Systems of Conservation Equations with a Convex Extension. Proceedings of the National Academy of Sciences, 68(8), 1686-1688. doi:10.1073/pnas.68.8.1686

Nessyahu, H., & Tadmor, E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws. Journal of Computational Physics, 87(2), 408-463. doi:10.1016/0021-9991(90)90260-8

Jiang, G.-S., & Tadmor, E. (1998). Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM Journal on Scientific Computing, 19(6), 1892-1917. doi:10.1137/s106482759631041x

Kurganov, A., & Tadmor, E. (2000). New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations. Journal of Computational Physics, 160(1), 241-282. doi:10.1006/jcph.2000.6459

Liu, Y. (2005). Central schemes on overlapping cells. Journal of Computational Physics, 209(1), 82-104. doi:10.1016/j.jcp.2005.03.014

Jiang, G. S., Levy, D., Lin, C. T., Osher, S., & Tadmor, E. (1998). High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 35(6), 2147-2168. doi:10.1137/s0036142997317560

Bianco, F., Puppo, G., & Russo, G. (1999). High-Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM Journal on Scientific Computing, 21(1), 294-322. doi:10.1137/s1064827597324998

Harten, A., Engquist, B., Osher, S., & Chakravarthy, S. R. (1987). Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 71(2), 231-303. doi:10.1016/0021-9991(87)90031-3

Levy, D., Puppo, G., & Russo, G. (1999). Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 33(3), 547-571. doi:10.1051/m2an:1999152

Levy, D., Puppo, G., & Russo, G. (2002). A Fourth-Order Central WENO Scheme for Multidimensional Hyperbolic Systems of Conservation Laws. SIAM Journal on Scientific Computing, 24(2), 480-506. doi:10.1137/s1064827501385852

Liu, X.-D., Osher, S., & Chan, T. (1994). Weighted Essentially Non-oscillatory Schemes. Journal of Computational Physics, 115(1), 200-212. doi:10.1006/jcph.1994.1187

Zennaro, M. (1986). Natural continuous extensions of Runge-Kutta methods. Mathematics of Computation, 46(173), 119-119. doi:10.1090/s0025-5718-1986-0815835-1

Jiang, G.-S., & Shu, C.-W. (1996). Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics, 126(1), 202-228. doi:10.1006/jcph.1996.0130

Balsara, D. S., & Shu, C.-W. (2000). Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy. Journal of Computational Physics, 160(2), 405-452. doi:10.1006/jcph.2000.6443

Caleffi, V., Valiani, A., & Bernini, A. (2006). Fourth-order balanced source term treatment in central WENO schemes for shallow water equations. Journal of Computational Physics, 218(1), 228-245. doi:10.1016/j.jcp.2006.02.001

Balaguer, Á., & Conde, C. (2005). Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 43(2), 455-473. doi:10.1137/s0036142903437106

Liu, X.-D., & Osher, S. (1996). Nonoscillatory High Order Accurate Self-Similar Maximum Principle Satisfying Shock Capturing Schemes I. SIAM Journal on Numerical Analysis, 33(2), 760-779. doi:10.1137/0733038

Liu, X.-D., & Tadmor, E. (1998). Third order nonoscillatory central scheme for hyperbolic conservation laws. Numerische Mathematik, 79(3), 397-425. doi:10.1007/s002110050345

Peer, A. A. I., Gopaul, A., Dauhoo, M. Z., & Bhuruth, M. (2008). A new fourth-order non-oscillatory central scheme for hyperbolic conservation laws. Applied Numerical Mathematics, 58(5), 674-688. doi:10.1016/j.apnum.2007.02.004

Pareschi, L., Puppo, G., & Russo, G. (2005). Central Runge--Kutta Schemes for Conservation Laws. SIAM Journal on Scientific Computing, 26(3), 979-999. doi:10.1137/s1064827503420696

Dehghan, M., & Jazlanian, R. (2009). A fourth-order central Runge-Kutta scheme for hyperbolic conservation laws. Numerical Methods for Partial Differential Equations, NA-NA. doi:10.1002/num.20530

Balaguer, A., Conde, C., López, J. A., & Martínez, V. (2001). A finite volume method with a modified ENO scheme using a Hermite interpolation to solve advection diffusion equations. International Journal for Numerical Methods in Engineering, 50(10), 2339-2371. doi:10.1002/nme.123

Fernández-Nieto, E. D., & Martínez, V. (2007). A treatment of discontinuities for nonlinear systems with linearly degenerate fields. Computers & Fluids, 36(5), 987-1003. doi:10.1016/j.compfluid.2006.08.003

Qiu, J., & Shu, C.-W. (2002). On the Construction, Comparison, and Local Characteristic Decomposition for High-Order Central WENO Schemes. Journal of Computational Physics, 183(1), 187-209. doi:10.1006/jcph.2002.7191

Sod, G. A. (1978). A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1), 1-31. doi:10.1016/0021-9991(78)90023-2

Lax, P. D. (1954). Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 7(1), 159-193. doi:10.1002/cpa.3160070112

Zhou, Y. C., & Wei, G. W. (2003). High resolution conjugate filters for the simulation of flows. Journal of Computational Physics, 189(1), 159-179. doi:10.1016/s0021-9991(03)00206-7

Garnier, E., Sagaut, P., & Deville, M. (2001). A Class of Explicit ENO Filters with Application to Unsteady Flows. Journal of Computational Physics, 170(1), 184-204. doi:10.1006/jcph.2001.6732

Zhou, Y. C., Gu, Y., & Wei, G. W. (2003). Shock-capturing with natural high-frequency oscillations. International Journal for Numerical Methods in Fluids, 41(12), 1319-1338. doi:10.1002/fld.449

Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P., & Caruelle, B. (2000). High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes: Application to Compressible Flows. Journal of Computational Physics, 161(1), 114-139. doi:10.1006/jcph.2000.6492

Shu, C.-W. (1990). Numerical experiments on the accuracy of ENO and modified ENO schemes. Journal of Scientific Computing, 5(2), 127-149. doi:10.1007/bf01065581

Sun, Y., Zhou, Y. C., Li, S.-G., & Wei, G. W. (2006). A windowed Fourier pseudospectral method for hyperbolic conservation laws. Journal of Computational Physics, 214(2), 466-490. doi:10.1016/j.jcp.2005.09.027

Shu CW Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws 1997

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem