- -

Electronic excited states of guanine-cytosine hairpins and duplexes studied by fluorescence spectroscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electronic excited states of guanine-cytosine hairpins and duplexes studied by fluorescence spectroscopy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Brazard, J. es_ES
dc.contributor.author Thazhathveetil, A.K. es_ES
dc.contributor.author Vayá Pérez, Ignacio es_ES
dc.contributor.author Lewis, F.D. es_ES
dc.contributor.author Gustavsson, T. es_ES
dc.contributor.author Markovitsi, D. es_ES
dc.date.accessioned 2016-01-29T11:45:22Z
dc.date.available 2016-01-29T11:45:22Z
dc.date.issued 2013
dc.identifier.issn 1474-905X
dc.identifier.uri http://hdl.handle.net/10251/60361
dc.description.abstract [EN] Guanine-cytosine hairpins, containing a hexaethylene glycol bridge, are studied by steady-state fluorescence spectroscopy and time-correlated single photon counting; their properties are compared to those of duplexes with the same sequence. It is shown that, both in hairpins and in duplexes, base pairing induces quenching of the pi pi(star) fluorescence, the quantum yield decreasing by at least two orders of magnitude. When the size of the systems increases from two to ten base pairs, a fluorescent component decaying on the nanosecond time-scale appears at energy higher than that stemming from the bright states of non-interacting mono-nucleotides (ca. 330 nm). For ten base pairs, this new fluorescence forms a well-defined band peaking at 305 nm. Its intensity is about 20% higher for the hairpin compared to the duplex. Its position (red-shifted by 1600 cm(-1)) and width (broader by 1800 cm(-1) FWHM) differ from those observed for large duplexes containing 1000 base pairs, suggesting the involvement of electronic coupling. Fluorescence anisotropy reveals that the excited states responsible for high energy emission are not populated directly upon photon absorption but are reached during a relaxation process. They are assigned to charge transfer states. According to the emerging picture, the amplitude of conformational motions determines whether instantaneous deactivation to the ground state or emission from charge transfer states will take place, while pi pi(star) fluorescence is associated to imperfect base-pairing. es_ES
dc.description.sponsorship The French Agency for Research (ANR-10-BLAN-0809-01), the Conselleria de Educacion-Generalitat Valenciana (VALi+D program to I.V., N° 2010033) and the US Department of Energy, Office of Basic Energy Sciences (grant no. DE-FG02-96ER14604 to F.D.L.) are acknowledged for financial support.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Electronic excited states of guanine-cytosine hairpins and duplexes studied by fluorescence spectroscopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3pp50088h
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-BLAN-0809/FR/Photo-induced energy transfer in methylated DNA helices and its relevance to UV damage : an interactive theoretical-experimental study/DNAexciton/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2010%2F033/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FG02-96ER14604/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Brazard, J.; Thazhathveetil, A.; Vayá Pérez, I.; Lewis, F.; Gustavsson, T.; Markovitsi, D. (2013). Electronic excited states of guanine-cytosine hairpins and duplexes studied by fluorescence spectroscopy. Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences. 12(8):1453-1459. https://doi.org/10.1039/c3pp50088h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3pp50088h es_ES
dc.description.upvformatpinicio 1453 es_ES
dc.description.upvformatpfin 1459 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 254951 es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder U.S. Department of Energy
dc.description.references Bouvier, B., Dognon, J.-P., Lavery, R., Markovitsi, D., Millié, P., Onidas, D., & Zakrzewska, K. (2003). Influence of Conformational Dynamics on the Exciton States of DNA Oligomers. The Journal of Physical Chemistry B, 107(48), 13512-13522. doi:10.1021/jp036164u es_ES
dc.description.references Mezzina, E., Mariani, P., Itri, R., Masiero, S., Pieraccini, S., Spada, G. P., … Gottarelli, G. (2001). The Self-Assembly of a Lipophilic Guanosine Nucleoside into Polymeric Columnar Aggregates: The Nucleoside Structure Contains Sufficient Information To Drive the Process towards a Strikingly Regular Polymer. Chemistry, 7(2), 388-395. doi:10.1002/1521-3765(20010119)7:2<388::aid-chem388>3.0.co;2-v es_ES
dc.description.references Markovitsi, D., Gustavsson, T., & Talbot, F. (2007). Excited states and energy transfer among DNA bases in double helices. Photochemical & Photobiological Sciences, 6(7), 717. doi:10.1039/b705674e es_ES
dc.description.references Vayá, I., Gustavsson, T., Douki, T., Berlin, Y., & Markovitsi, D. (2012). Electronic Excitation Energy Transfer between Nucleobases of Natural DNA. Journal of the American Chemical Society, 134(28), 11366-11368. doi:10.1021/ja304328g es_ES
dc.description.references Kohler, B. (2010). Nonradiative Decay Mechanisms in DNA Model Systems. The Journal of Physical Chemistry Letters, 1(13), 2047-2053. doi:10.1021/jz100491x es_ES
dc.description.references Markovitsi, D., Gustavsson, T., & Vayá, I. (2010). Fluorescence of DNA Duplexes: From Model Helices to Natural DNA. The Journal of Physical Chemistry Letters, 1(22), 3271-3276. doi:10.1021/jz101122t es_ES
dc.description.references Markovitsi, D., Onidas, D., Talbot, F., Marguet, S., Gustavsson, T., & Lazzarotto, E. (2006). UVB/UVC induced processes in model DNA helices studied by time-resolved spectroscopy: Pitfalls and tricks. Journal of Photochemistry and Photobiology A: Chemistry, 183(1-2), 1-8. doi:10.1016/j.jphotochem.2006.05.029 es_ES
dc.description.references Vayá, I., Miannay, F.-A., Gustavsson, T., & Markovitsi, D. (2010). High-Energy Long-Lived Excited States in DNA Double Strands. ChemPhysChem, 11(5), 987-989. doi:10.1002/cphc.201000027 es_ES
dc.description.references Miannay, F.-A., Bányász, Á., Gustavsson, T., & Markovitsi, D. (2007). Ultrafast Excited-State Deactivation and Energy Transfer in Guanine−Cytosine DNA Double Helices. Journal of the American Chemical Society, 129(47), 14574-14575. doi:10.1021/ja077100q es_ES
dc.description.references (s. f.). doi:10.1021/ja073448 es_ES
dc.description.references Sobolewski, A. L., Domcke, W., & Hattig, C. (2005). Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: The role of electron-driven proton-transfer processes. Proceedings of the National Academy of Sciences, 102(50), 17903-17906. doi:10.1073/pnas.0504087102 es_ES
dc.description.references Abo-Riziq, A., Grace, L., Nir, E., Kabelac, M., Hobza, P., & de Vries, M. S. (2004). Photochemical selectivity in guanine-cytosine base-pair structures. Proceedings of the National Academy of Sciences, 102(1), 20-23. doi:10.1073/pnas.0408574102 es_ES
dc.description.references Altmann, S., Labhardt, A. M., Bur, D., Lehmann, C., Bannwarth, W., Billeter, M., … Leupin, W. (1995). NMR studies of DNA duplexes singly cross-linked by different synthetic linkers. Nucleic Acids Research, 23(23), 4827-4835. doi:10.1093/nar/23.23.4827 es_ES
dc.description.references Kozerski, L. (2001). A nicked duplex decamer DNA with a PEG6 tether. Nucleic Acids Research, 29(5), 1132-1143. doi:10.1093/nar/29.5.1132 es_ES
dc.description.references Rumney, S., & Kool, E. T. (1995). Structural Optimization of Non-Nucleotide Loop Replacements for Duplex and Triplex DNAs. Journal of the American Chemical Society, 117(21), 5635-5646. doi:10.1021/ja00126a004 es_ES
dc.description.references Hariharan, M., Siegmund, K., & Lewis, F. D. (2010). Structure and Stability of Alkane-Linked DNA Hairpin Conjugates. The Journal of Organic Chemistry, 75(18), 6236-6243. doi:10.1021/jo1013299 es_ES
dc.description.references Lewis, F. D., Letsinger, R. L., & Wasielewski, M. R. (2001). Dynamics of Photoinduced Charge Transfer and Hole Transport in Synthetic DNA Hairpins. Accounts of Chemical Research, 34(2), 159-170. doi:10.1021/ar0000197 es_ES
dc.description.references McCullagh, M., Hariharan, M., Lewis, F. D., Markovitsi, D., Douki, T., & Schatz, G. C. (2010). Conformational Control of TT Dimerization in DNA Conjugates. A Molecular Dynamics Study. The Journal of Physical Chemistry B, 114(15), 5215-5221. doi:10.1021/jp100983t es_ES
dc.description.references McCullagh, M., Zhang, L., Karaba, A. H., Zhu, H., Schatz, G. C., & Lewis, F. D. (2008). Effect of Loop Distortion on the Stability and Structural Dynamics of DNA Hairpin and Dumbbell Conjugates. The Journal of Physical Chemistry B, 112(36), 11415-11421. doi:10.1021/jp802378a es_ES
dc.description.references Onidas, D., Markovitsi, D., Marguet, S., Sharonov, A., & Gustavsson, T. (2002). Fluorescence Properties of DNA Nucleosides and Nucleotides:  A Refined Steady-State and Femtosecond Investigation. The Journal of Physical Chemistry B, 106(43), 11367-11374. doi:10.1021/jp026063g es_ES
dc.description.references Riazance, J. H., Baase, W. A., Johnson, W. C., Hall, K., Cruz, P., & Tinoco, I. (1985). Evidence for Z-form RNA by vacuum UV circular dichroism. Nucleic Acids Research, 13(13), 4983-4989. doi:10.1093/nar/13.13.4983 es_ES
dc.description.references Tuma, J., Tonzani, S., Schatz, G. C., Karaba, A. H., & Lewis, F. D. (2007). Structure and Electronic Spectra of DNA Mini-hairpins with Gn:CnStems. The Journal of Physical Chemistry B, 111(45), 13101-13106. doi:10.1021/jp072303m es_ES
dc.description.references Georghiou, S., Kubala, S. M., & Large, C. C. (1998). Environmental Control of the Deformability of the DNA Double Helix. Photochemistry and Photobiology, 67(5), 526-531. doi:10.1111/j.1751-1097.1998.tb09088.x es_ES
dc.description.references Zuo, X., Cui, G., Merz, K. M., Zhang, L., Lewis, F. D., & Tiede, D. M. (2006). X-ray diffraction «fingerprinting» of DNA structure in solution for quantitative evaluation of molecular dynamics simulation. Proceedings of the National Academy of Sciences, 103(10), 3534-3539. doi:10.1073/pnas.0600022103 es_ES
dc.description.references Marguet, S., Markovitsi, D., Millié, P., Sigal, H., & Kumar, S. (1998). Influence of Disorder on Electronic Excited States:  An Experimental and Numerical Study of Alkylthiotriphenylene Columnar Phases. The Journal of Physical Chemistry B, 102(24), 4697-4710. doi:10.1021/jp980623n es_ES
dc.description.references Albrecht, A. C. (1961). Polarizations and assignments of transitions: The method of photoselection. Journal of Molecular Spectroscopy, 6, 84-108. doi:10.1016/0022-2852(61)90234-x es_ES
dc.description.references Hua, Y., Changenet-Barret, P., Gustavsson, T., & Markovitsi, D. (2013). The effect of size on the optical properties of guanine nanostructures: a femtosecond to nanosecond study. Physical Chemistry Chemical Physics, 15(19), 7396. doi:10.1039/c3cp00060e es_ES
dc.description.references Mariani, P., & Saturni, L. (1996). Measurement of intercolumnar forces between parallel guanosine four-stranded helices. Biophysical Journal, 70(6), 2867-2874. doi:10.1016/s0006-3495(96)79856-9 es_ES
dc.description.references Gustavsson, T., Improta, R., & Markovitsi, D. (2010). DNA/RNA: Building Blocks of Life Under UV Irradiation. The Journal of Physical Chemistry Letters, 1(13), 2025-2030. doi:10.1021/jz1004973 es_ES
dc.description.references Hare, P. M., Crespo-Hernandez, C. E., & Kohler, B. (2006). Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proceedings of the National Academy of Sciences, 104(2), 435-440. doi:10.1073/pnas.0608055104 es_ES
dc.description.references Scholes, G. D., & Ghiggino, K. P. (1994). Electronic Interactions and Interchromophore Excitation Transfer. The Journal of Physical Chemistry, 98(17), 4580-4590. doi:10.1021/j100068a017 es_ES
dc.description.references Nachtigallová, D., Hobza, P., & Ritze, H.-H. (2008). Electronic splitting in the excited states of DNA base homodimers and -trimers: an evaluation of short-range and Coulombic interactions. Physical Chemistry Chemical Physics, 10(37), 5689. doi:10.1039/b806323k es_ES
dc.description.references Starikov, E. B., Cuniberti, G., & Tanaka, S. (2009). Conformation Dependence of DNA Exciton Parentage. The Journal of Physical Chemistry B, 113(30), 10428-10435. doi:10.1021/jp9035869 es_ES
dc.description.references Plasser, F., Aquino, A. J. A., Hase, W. L., & Lischka, H. (2012). UV Absorption Spectrum of Alternating DNA Duplexes. Analysis of Excitonic and Charge Transfer Interactions. The Journal of Physical Chemistry A, 116(46), 11151-11160. doi:10.1021/jp304725r es_ES
dc.description.references Sauri, V., Gobbo, J. P., Serrano-Pérez, J. J., Lundberg, M., Coto, P. B., Serrano-Andrés, L., … Roca-Sanjuán, D. (2012). Proton/Hydrogen Transfer Mechanisms in the Guanine–Cytosine Base Pair: Photostability and Tautomerism. Journal of Chemical Theory and Computation, 9(1), 481-496. doi:10.1021/ct3006166 es_ES
dc.description.references Groenhof, G., Schäfer, L. V., Boggio-Pasqua, M., Goette, M., Grubmüller, H., & Robb, M. A. (2007). Ultrafast Deactivation of an Excited Cytosine−Guanine Base Pair in DNA. Journal of the American Chemical Society, 129(21), 6812-6819. doi:10.1021/ja069176c es_ES
dc.description.references Giudice, E. (2003). Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Research, 31(5), 1434-1443. doi:10.1093/nar/gkg239 es_ES
dc.description.references Folta-Stogniew, E., & Russu, I. M. (1994). Sequence Dependence of Base-Pair Opening in a DNA Dodecamer Containing the CACA/GTGT Sequence Motif. Biochemistry, 33(36), 11016-11024. doi:10.1021/bi00202a022 es_ES
dc.description.references Schwalb, N. K., & Temps, F. (2008). Base Sequence and Higher-Order Structure Induce the Complex Excited-State Dynamics in DNA. Science, 322(5899), 243-245. doi:10.1126/science.1161651 es_ES
dc.description.references Vayá, I., Brazard, J., Gustavsson, T., & Markovitsi, D. (2012). Electronically excited states of DNA oligonucleotides with disordered base sequences studied by fluorescence spectroscopy. Photochemical & Photobiological Sciences, 11(11), 1767. doi:10.1039/c2pp25180a es_ES
dc.description.references Pan, Z., Hariharan, M., Arkin, J. D., Jalilov, A. S., McCullagh, M., Schatz, G. C., & Lewis, F. D. (2011). Electron Donor–Acceptor Interactions with Flanking Purines Influence the Efficiency of Thymine Photodimerization. Journal of the American Chemical Society, 133(51), 20793-20798. doi:10.1021/ja205460f es_ES
dc.description.references Špačková, N., Berger, I., & Šponer, J. (1999). Nanosecond Molecular Dynamics Simulations of Parallel and Antiparallel Guanine Quadruplex DNA Molecules. Journal of the American Chemical Society, 121(23), 5519-5534. doi:10.1021/ja984449s es_ES
dc.description.references Münzel, M., Szeibert, C., Glas, A. F., Globisch, D., & Carell, T. (2011). Discovery and Synthesis of New UV-Induced Intrastrand C(4−8)G and G(8−4)C Photolesions. Journal of the American Chemical Society, 133(14), 5186-5189. doi:10.1021/ja111304f es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem