Mostrar el registro sencillo del ítem
dc.contributor.author | Brazard, J. | es_ES |
dc.contributor.author | Thazhathveetil, A.K. | es_ES |
dc.contributor.author | Vayá Pérez, Ignacio | es_ES |
dc.contributor.author | Lewis, F.D. | es_ES |
dc.contributor.author | Gustavsson, T. | es_ES |
dc.contributor.author | Markovitsi, D. | es_ES |
dc.date.accessioned | 2016-01-29T11:45:22Z | |
dc.date.available | 2016-01-29T11:45:22Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1474-905X | |
dc.identifier.uri | http://hdl.handle.net/10251/60361 | |
dc.description.abstract | [EN] Guanine-cytosine hairpins, containing a hexaethylene glycol bridge, are studied by steady-state fluorescence spectroscopy and time-correlated single photon counting; their properties are compared to those of duplexes with the same sequence. It is shown that, both in hairpins and in duplexes, base pairing induces quenching of the pi pi(star) fluorescence, the quantum yield decreasing by at least two orders of magnitude. When the size of the systems increases from two to ten base pairs, a fluorescent component decaying on the nanosecond time-scale appears at energy higher than that stemming from the bright states of non-interacting mono-nucleotides (ca. 330 nm). For ten base pairs, this new fluorescence forms a well-defined band peaking at 305 nm. Its intensity is about 20% higher for the hairpin compared to the duplex. Its position (red-shifted by 1600 cm(-1)) and width (broader by 1800 cm(-1) FWHM) differ from those observed for large duplexes containing 1000 base pairs, suggesting the involvement of electronic coupling. Fluorescence anisotropy reveals that the excited states responsible for high energy emission are not populated directly upon photon absorption but are reached during a relaxation process. They are assigned to charge transfer states. According to the emerging picture, the amplitude of conformational motions determines whether instantaneous deactivation to the ground state or emission from charge transfer states will take place, while pi pi(star) fluorescence is associated to imperfect base-pairing. | es_ES |
dc.description.sponsorship | The French Agency for Research (ANR-10-BLAN-0809-01), the Conselleria de Educacion-Generalitat Valenciana (VALi+D program to I.V., N° 2010033) and the US Department of Energy, Office of Basic Energy Sciences (grant no. DE-FG02-96ER14604 to F.D.L.) are acknowledged for financial support. | |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Electronic excited states of guanine-cytosine hairpins and duplexes studied by fluorescence spectroscopy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3pp50088h | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-BLAN-0809/FR/Photo-induced energy transfer in methylated DNA helices and its relevance to UV damage : an interactive theoretical-experimental study/DNAexciton/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2010%2F033/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-FG02-96ER14604/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Brazard, J.; Thazhathveetil, A.; Vayá Pérez, I.; Lewis, F.; Gustavsson, T.; Markovitsi, D. (2013). Electronic excited states of guanine-cytosine hairpins and duplexes studied by fluorescence spectroscopy. Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences. 12(8):1453-1459. https://doi.org/10.1039/c3pp50088h | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3pp50088h | es_ES |
dc.description.upvformatpinicio | 1453 | es_ES |
dc.description.upvformatpfin | 1459 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 254951 | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | U.S. Department of Energy | |
dc.description.references | Bouvier, B., Dognon, J.-P., Lavery, R., Markovitsi, D., Millié, P., Onidas, D., & Zakrzewska, K. (2003). Influence of Conformational Dynamics on the Exciton States of DNA Oligomers. The Journal of Physical Chemistry B, 107(48), 13512-13522. doi:10.1021/jp036164u | es_ES |
dc.description.references | Mezzina, E., Mariani, P., Itri, R., Masiero, S., Pieraccini, S., Spada, G. P., … Gottarelli, G. (2001). The Self-Assembly of a Lipophilic Guanosine Nucleoside into Polymeric Columnar Aggregates: The Nucleoside Structure Contains Sufficient Information To Drive the Process towards a Strikingly Regular Polymer. Chemistry, 7(2), 388-395. doi:10.1002/1521-3765(20010119)7:2<388::aid-chem388>3.0.co;2-v | es_ES |
dc.description.references | Markovitsi, D., Gustavsson, T., & Talbot, F. (2007). Excited states and energy transfer among DNA bases in double helices. Photochemical & Photobiological Sciences, 6(7), 717. doi:10.1039/b705674e | es_ES |
dc.description.references | Vayá, I., Gustavsson, T., Douki, T., Berlin, Y., & Markovitsi, D. (2012). Electronic Excitation Energy Transfer between Nucleobases of Natural DNA. Journal of the American Chemical Society, 134(28), 11366-11368. doi:10.1021/ja304328g | es_ES |
dc.description.references | Kohler, B. (2010). Nonradiative Decay Mechanisms in DNA Model Systems. The Journal of Physical Chemistry Letters, 1(13), 2047-2053. doi:10.1021/jz100491x | es_ES |
dc.description.references | Markovitsi, D., Gustavsson, T., & Vayá, I. (2010). Fluorescence of DNA Duplexes: From Model Helices to Natural DNA. The Journal of Physical Chemistry Letters, 1(22), 3271-3276. doi:10.1021/jz101122t | es_ES |
dc.description.references | Markovitsi, D., Onidas, D., Talbot, F., Marguet, S., Gustavsson, T., & Lazzarotto, E. (2006). UVB/UVC induced processes in model DNA helices studied by time-resolved spectroscopy: Pitfalls and tricks. Journal of Photochemistry and Photobiology A: Chemistry, 183(1-2), 1-8. doi:10.1016/j.jphotochem.2006.05.029 | es_ES |
dc.description.references | Vayá, I., Miannay, F.-A., Gustavsson, T., & Markovitsi, D. (2010). High-Energy Long-Lived Excited States in DNA Double Strands. ChemPhysChem, 11(5), 987-989. doi:10.1002/cphc.201000027 | es_ES |
dc.description.references | Miannay, F.-A., Bányász, Á., Gustavsson, T., & Markovitsi, D. (2007). Ultrafast Excited-State Deactivation and Energy Transfer in Guanine−Cytosine DNA Double Helices. Journal of the American Chemical Society, 129(47), 14574-14575. doi:10.1021/ja077100q | es_ES |
dc.description.references | (s. f.). doi:10.1021/ja073448 | es_ES |
dc.description.references | Sobolewski, A. L., Domcke, W., & Hattig, C. (2005). Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: The role of electron-driven proton-transfer processes. Proceedings of the National Academy of Sciences, 102(50), 17903-17906. doi:10.1073/pnas.0504087102 | es_ES |
dc.description.references | Abo-Riziq, A., Grace, L., Nir, E., Kabelac, M., Hobza, P., & de Vries, M. S. (2004). Photochemical selectivity in guanine-cytosine base-pair structures. Proceedings of the National Academy of Sciences, 102(1), 20-23. doi:10.1073/pnas.0408574102 | es_ES |
dc.description.references | Altmann, S., Labhardt, A. M., Bur, D., Lehmann, C., Bannwarth, W., Billeter, M., … Leupin, W. (1995). NMR studies of DNA duplexes singly cross-linked by different synthetic linkers. Nucleic Acids Research, 23(23), 4827-4835. doi:10.1093/nar/23.23.4827 | es_ES |
dc.description.references | Kozerski, L. (2001). A nicked duplex decamer DNA with a PEG6 tether. Nucleic Acids Research, 29(5), 1132-1143. doi:10.1093/nar/29.5.1132 | es_ES |
dc.description.references | Rumney, S., & Kool, E. T. (1995). Structural Optimization of Non-Nucleotide Loop Replacements for Duplex and Triplex DNAs. Journal of the American Chemical Society, 117(21), 5635-5646. doi:10.1021/ja00126a004 | es_ES |
dc.description.references | Hariharan, M., Siegmund, K., & Lewis, F. D. (2010). Structure and Stability of Alkane-Linked DNA Hairpin Conjugates. The Journal of Organic Chemistry, 75(18), 6236-6243. doi:10.1021/jo1013299 | es_ES |
dc.description.references | Lewis, F. D., Letsinger, R. L., & Wasielewski, M. R. (2001). Dynamics of Photoinduced Charge Transfer and Hole Transport in Synthetic DNA Hairpins. Accounts of Chemical Research, 34(2), 159-170. doi:10.1021/ar0000197 | es_ES |
dc.description.references | McCullagh, M., Hariharan, M., Lewis, F. D., Markovitsi, D., Douki, T., & Schatz, G. C. (2010). Conformational Control of TT Dimerization in DNA Conjugates. A Molecular Dynamics Study. The Journal of Physical Chemistry B, 114(15), 5215-5221. doi:10.1021/jp100983t | es_ES |
dc.description.references | McCullagh, M., Zhang, L., Karaba, A. H., Zhu, H., Schatz, G. C., & Lewis, F. D. (2008). Effect of Loop Distortion on the Stability and Structural Dynamics of DNA Hairpin and Dumbbell Conjugates. The Journal of Physical Chemistry B, 112(36), 11415-11421. doi:10.1021/jp802378a | es_ES |
dc.description.references | Onidas, D., Markovitsi, D., Marguet, S., Sharonov, A., & Gustavsson, T. (2002). Fluorescence Properties of DNA Nucleosides and Nucleotides: A Refined Steady-State and Femtosecond Investigation. The Journal of Physical Chemistry B, 106(43), 11367-11374. doi:10.1021/jp026063g | es_ES |
dc.description.references | Riazance, J. H., Baase, W. A., Johnson, W. C., Hall, K., Cruz, P., & Tinoco, I. (1985). Evidence for Z-form RNA by vacuum UV circular dichroism. Nucleic Acids Research, 13(13), 4983-4989. doi:10.1093/nar/13.13.4983 | es_ES |
dc.description.references | Tuma, J., Tonzani, S., Schatz, G. C., Karaba, A. H., & Lewis, F. D. (2007). Structure and Electronic Spectra of DNA Mini-hairpins with Gn:CnStems. The Journal of Physical Chemistry B, 111(45), 13101-13106. doi:10.1021/jp072303m | es_ES |
dc.description.references | Georghiou, S., Kubala, S. M., & Large, C. C. (1998). Environmental Control of the Deformability of the DNA Double Helix. Photochemistry and Photobiology, 67(5), 526-531. doi:10.1111/j.1751-1097.1998.tb09088.x | es_ES |
dc.description.references | Zuo, X., Cui, G., Merz, K. M., Zhang, L., Lewis, F. D., & Tiede, D. M. (2006). X-ray diffraction «fingerprinting» of DNA structure in solution for quantitative evaluation of molecular dynamics simulation. Proceedings of the National Academy of Sciences, 103(10), 3534-3539. doi:10.1073/pnas.0600022103 | es_ES |
dc.description.references | Marguet, S., Markovitsi, D., Millié, P., Sigal, H., & Kumar, S. (1998). Influence of Disorder on Electronic Excited States: An Experimental and Numerical Study of Alkylthiotriphenylene Columnar Phases. The Journal of Physical Chemistry B, 102(24), 4697-4710. doi:10.1021/jp980623n | es_ES |
dc.description.references | Albrecht, A. C. (1961). Polarizations and assignments of transitions: The method of photoselection. Journal of Molecular Spectroscopy, 6, 84-108. doi:10.1016/0022-2852(61)90234-x | es_ES |
dc.description.references | Hua, Y., Changenet-Barret, P., Gustavsson, T., & Markovitsi, D. (2013). The effect of size on the optical properties of guanine nanostructures: a femtosecond to nanosecond study. Physical Chemistry Chemical Physics, 15(19), 7396. doi:10.1039/c3cp00060e | es_ES |
dc.description.references | Mariani, P., & Saturni, L. (1996). Measurement of intercolumnar forces between parallel guanosine four-stranded helices. Biophysical Journal, 70(6), 2867-2874. doi:10.1016/s0006-3495(96)79856-9 | es_ES |
dc.description.references | Gustavsson, T., Improta, R., & Markovitsi, D. (2010). DNA/RNA: Building Blocks of Life Under UV Irradiation. The Journal of Physical Chemistry Letters, 1(13), 2025-2030. doi:10.1021/jz1004973 | es_ES |
dc.description.references | Hare, P. M., Crespo-Hernandez, C. E., & Kohler, B. (2006). Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proceedings of the National Academy of Sciences, 104(2), 435-440. doi:10.1073/pnas.0608055104 | es_ES |
dc.description.references | Scholes, G. D., & Ghiggino, K. P. (1994). Electronic Interactions and Interchromophore Excitation Transfer. The Journal of Physical Chemistry, 98(17), 4580-4590. doi:10.1021/j100068a017 | es_ES |
dc.description.references | Nachtigallová, D., Hobza, P., & Ritze, H.-H. (2008). Electronic splitting in the excited states of DNA base homodimers and -trimers: an evaluation of short-range and Coulombic interactions. Physical Chemistry Chemical Physics, 10(37), 5689. doi:10.1039/b806323k | es_ES |
dc.description.references | Starikov, E. B., Cuniberti, G., & Tanaka, S. (2009). Conformation Dependence of DNA Exciton Parentage. The Journal of Physical Chemistry B, 113(30), 10428-10435. doi:10.1021/jp9035869 | es_ES |
dc.description.references | Plasser, F., Aquino, A. J. A., Hase, W. L., & Lischka, H. (2012). UV Absorption Spectrum of Alternating DNA Duplexes. Analysis of Excitonic and Charge Transfer Interactions. The Journal of Physical Chemistry A, 116(46), 11151-11160. doi:10.1021/jp304725r | es_ES |
dc.description.references | Sauri, V., Gobbo, J. P., Serrano-Pérez, J. J., Lundberg, M., Coto, P. B., Serrano-Andrés, L., … Roca-Sanjuán, D. (2012). Proton/Hydrogen Transfer Mechanisms in the Guanine–Cytosine Base Pair: Photostability and Tautomerism. Journal of Chemical Theory and Computation, 9(1), 481-496. doi:10.1021/ct3006166 | es_ES |
dc.description.references | Groenhof, G., Schäfer, L. V., Boggio-Pasqua, M., Goette, M., Grubmüller, H., & Robb, M. A. (2007). Ultrafast Deactivation of an Excited Cytosine−Guanine Base Pair in DNA. Journal of the American Chemical Society, 129(21), 6812-6819. doi:10.1021/ja069176c | es_ES |
dc.description.references | Giudice, E. (2003). Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Research, 31(5), 1434-1443. doi:10.1093/nar/gkg239 | es_ES |
dc.description.references | Folta-Stogniew, E., & Russu, I. M. (1994). Sequence Dependence of Base-Pair Opening in a DNA Dodecamer Containing the CACA/GTGT Sequence Motif. Biochemistry, 33(36), 11016-11024. doi:10.1021/bi00202a022 | es_ES |
dc.description.references | Schwalb, N. K., & Temps, F. (2008). Base Sequence and Higher-Order Structure Induce the Complex Excited-State Dynamics in DNA. Science, 322(5899), 243-245. doi:10.1126/science.1161651 | es_ES |
dc.description.references | Vayá, I., Brazard, J., Gustavsson, T., & Markovitsi, D. (2012). Electronically excited states of DNA oligonucleotides with disordered base sequences studied by fluorescence spectroscopy. Photochemical & Photobiological Sciences, 11(11), 1767. doi:10.1039/c2pp25180a | es_ES |
dc.description.references | Pan, Z., Hariharan, M., Arkin, J. D., Jalilov, A. S., McCullagh, M., Schatz, G. C., & Lewis, F. D. (2011). Electron Donor–Acceptor Interactions with Flanking Purines Influence the Efficiency of Thymine Photodimerization. Journal of the American Chemical Society, 133(51), 20793-20798. doi:10.1021/ja205460f | es_ES |
dc.description.references | Špačková, N., Berger, I., & Šponer, J. (1999). Nanosecond Molecular Dynamics Simulations of Parallel and Antiparallel Guanine Quadruplex DNA Molecules. Journal of the American Chemical Society, 121(23), 5519-5534. doi:10.1021/ja984449s | es_ES |
dc.description.references | Münzel, M., Szeibert, C., Glas, A. F., Globisch, D., & Carell, T. (2011). Discovery and Synthesis of New UV-Induced Intrastrand C(4−8)G and G(8−4)C Photolesions. Journal of the American Chemical Society, 133(14), 5186-5189. doi:10.1021/ja111304f | es_ES |