- -

Chromo-fluorogenic BODIPY-complexes for selective detection of V-type nerve agent surrogates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chromo-fluorogenic BODIPY-complexes for selective detection of V-type nerve agent surrogates

Mostrar el registro completo del ítem

Barba Bon, A.; Costero Nieto, AM.; Gil Grau, S.; Sancenón Galarza, F.; Martínez Mañez, R. (2014). Chromo-fluorogenic BODIPY-complexes for selective detection of V-type nerve agent surrogates. Chemical Communications. 50(87):13289-13291. https://doi.org/10.1039/c4cc05945j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60425

Ficheros en el ítem

Metadatos del ítem

Título: Chromo-fluorogenic BODIPY-complexes for selective detection of V-type nerve agent surrogates
Autor: Barba Bon, Andrea Costero Nieto, Ana María Gil Grau, Salvador Sancenón Galarza, Félix Martínez Mañez, Ramón
Entidad UPV: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
Two new Eu3+ and Au3+ BODIPY-complexes capable of chromofluorogenically detecting micromolar concentrations of V-type nerve agent surrogates by a simple displacement assay are described
Palabras clave: CHEMICAL WARFARE AGENTS , GOLD(III) COMPLEXES , MIMICS , SENSORS , SURFACE , DYES
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemical Communications. (issn: 1359-7345 ) (eissn: 1364-548X )
DOI: 10.1039/c4cc05945j
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c4cc05945j
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
info:eu-repo/grantAgreement/MICINN//BES-2010-035349/ES/BES-2010-035349/
Agradecimientos:
Financial support from the Spanish Government (Project MAT2012-38429-C04) and the Generalitat Valencia (Project PROMETEOII/2014/047) is gratefully acknowledged. A.B.B acknowledges the award of a pre-doctoral FPI fellowship. ...[+]
Tipo: Artículo

References

Kim, K., Tsay, O. G., Atwood, D. A., & Churchill, D. G. (2011). Destruction and Detection of Chemical Warfare Agents. Chemical Reviews, 111(9), 5345-5403. doi:10.1021/cr100193y

S. M. Somani , Chemical Warfare Agent, Academic Press, San Diego, 1992

P. Taylor , in The Pharmacological Basis of Therapeutics, ed. J. G. Hardman, L. E. Limbird and A. G. Gilman, McGraw-Hill, New York, 10th edn, 2001, pp. 175–191 [+]
Kim, K., Tsay, O. G., Atwood, D. A., & Churchill, D. G. (2011). Destruction and Detection of Chemical Warfare Agents. Chemical Reviews, 111(9), 5345-5403. doi:10.1021/cr100193y

S. M. Somani , Chemical Warfare Agent, Academic Press, San Diego, 1992

P. Taylor , in The Pharmacological Basis of Therapeutics, ed. J. G. Hardman, L. E. Limbird and A. G. Gilman, McGraw-Hill, New York, 10th edn, 2001, pp. 175–191

J. A. Vale , P.Rice and T. C.Marrs, in Chemical Warfare Agents: Toxicology and Treatment, ed. T. C. Marrs, R. L. Maynard and F. R. Sidell, John Wiley & Sons, Chichester, 2007

R. Gupta , Handbook of Toxicology of Chemical Warfare Agents, Academic Press, London, 2009

Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013

Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f

Khan, M. A. K., Long, Y.-T., Schatte, G., & Kraatz, H.-B. (2007). Surface Studies of Aminoferrocene Derivatives on Gold:  Electrochemical Sensors for Chemical Warfare Agents. Analytical Chemistry, 79(7), 2877-2884. doi:10.1021/ac061981m

Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b

Díaz de Greñu, B., Moreno, D., Torroba, T., Berg, A., Gunnars, J., Nilsson, T., … Wästerby, P. (2014). Fluorescent Discrimination between Traces of Chemical Warfare Agents and Their Mimics. Journal of the American Chemical Society, 136(11), 4125-4128. doi:10.1021/ja500710m

Sambrook, M. R., & Notman, S. (2013). Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing. Chemical Society Reviews, 42(24), 9251. doi:10.1039/c3cs60230c

Dennison, G. H., Sambrook, M. R., & Johnston, M. R. (2014). VX and VG chemical warfare agents bidentate complexation with lanthanide ions. Chem. Commun., 50(2), 195-197. doi:10.1039/c3cc46712k

Joshi, K. A., Prouza, M., Kum, M., Wang, J., Tang, J., Haddon, R., … Mulchandani, A. (2006). V-Type Nerve Agent Detection Using a Carbon Nanotube-Based Amperometric Enzyme Electrode. Analytical Chemistry, 78(1), 331-336. doi:10.1021/ac051052f

Bazire, A., Gillon, E., Lockridge, O., Vallet, V., & Nachon, F. (2011). The kinetic study of the inhibition of human cholinesterases by demeton-S-methyl shows that cholinesterase-based titration methods are not suitable for this organophosphate. Toxicology in Vitro, 25(3), 754-759. doi:10.1016/j.tiv.2011.01.006

Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a

Royo, S., Gotor, R., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2012). Aryl carbinols as nerve agent probes. Influence of the conjugation on the sensing properties. New Journal of Chemistry, 36(7), 1485. doi:10.1039/c2nj40104e

Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie International Edition, 49(34), 5945-5948. doi:10.1002/anie.201001088

Barba-Bon, A., Costero, A. M., Gil, S., Harriman, A., & Sancenón, F. (2014). Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes. Chemistry - A European Journal, 20(21), 6339-6347. doi:10.1002/chem.201304475

Barba-Bon, A., Costero, A. M., Gil, S., Parra, M., Soto, J., Martínez-Máñez, R., & Sancenón, F. (2012). A new selective fluorogenic probe for trivalent cations. Chemical Communications, 48(24), 3000. doi:10.1039/c2cc17184h

Barba-Bon, A., Calabuig, L., Costero, A. M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2014). Off–on BODIPY-based chemosensors for selective detection of Al3+ and Cr3+versus Fe3+ in aqueous media. RSC Adv., 4(18), 8962-8965. doi:10.1039/c3ra46845c

Bandyopadhyay, I., Kim, M. J., Lee, Y. S., & Churchill, D. G. (2006). Favorable Pendant-Amino Metal Chelation in VX Nerve Agent Model Systems. The Journal of Physical Chemistry A, 110(10), 3655-3661. doi:10.1021/jp055112x

Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie International Edition, 45(35), 5825-5829. doi:10.1002/anie.200601634

Nadella, S., Sahoo, J., Subramanian, P. S., Sahu, A., Mishra, S., & Albrecht, M. (2014). Sensing of Phosphates by Using Luminescent EuIIIand TbIIIComplexes: Application to the Microalgal CellChlorella vulgaris. Chemistry - A European Journal, 20(20), 6047-6053. doi:10.1002/chem.201304664

Cao, L., Jennings, M. C., & Puddephatt, R. J. (2007). Amine−Amide Equilibrium in Gold(III) Complexes and a Gold(III)−Gold(I) Aurophilic Bond. Inorganic Chemistry, 46(4), 1361-1368. doi:10.1021/ic061911y

Casey, K. G., & Quitevis, E. L. (1988). Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols. The Journal of Physical Chemistry, 92(23), 6590-6594. doi:10.1021/j100334a023

Zou, T., Lum, C. T., Chui, S. S.-Y., & Che, C.-M. (2013). Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands: Thiol «Switch-on» Fluorescent Probes and Anti-Cancer Agents. Angewandte Chemie International Edition, 52(10), 2930-2933. doi:10.1002/anie.201209787

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem