- -

Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques

Show full item record

Bermúdez, V.; Pastor Soriano, JV.; López, JJ.; Campos, D. (2014). Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques. Measurement Science and Technology. 25(6):1-13. doi:10.1088/0957-0233/25/6/065204

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60427

Files in this item

Item Metadata

Title: Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques
Author: Bermúdez, Vicente Pastor Soriano, José Vicente López, J. Javier Campos, Daniel
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics
Issued date:
Abstract:
A study of soot measurement deviation using a diffusion charger sensor with three dilution ratios was conducted in order to obtain an optimum setting that can be used to obtain accurate measurements in terms of soot mass ...[+]
Subjects: Diesel engine , Soot emissions , Optical techniques , Electrical mobility techniques , Correlations
Copyrigths: Reserva de todos los derechos
Source:
Measurement Science and Technology. (issn: 0957-0233 )
DOI: 10.1088/0957-0233/25/6/065204
Publisher:
IOP Publishing: Hybrid Open Access
Publisher version: http://dx.doi.org/10.1088/0957-0233/25/6/065204
Type: Artículo

References

Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2005). Airborne Particulate Matter and Human Health: A Review. Aerosol Science and Technology, 39(8), 737-749. doi:10.1080/02786820500191348

Pope, C. A., Bates, D. V., & Raizenne, M. E. (1995). Health effects of particulate air pollution: time for reassessment? Environmental Health Perspectives, 103(5), 472-480. doi:10.1289/ehp.95103472

Giechaskiel, B., Dilara, P., Sandbach, E., & Andersson, J. (2008). Particle measurement programme (PMP) light-duty inter-laboratory exercise: comparison of different particle number measurement systems. Measurement Science and Technology, 19(9), 095401. doi:10.1088/0957-0233/19/9/095401 [+]
Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2005). Airborne Particulate Matter and Human Health: A Review. Aerosol Science and Technology, 39(8), 737-749. doi:10.1080/02786820500191348

Pope, C. A., Bates, D. V., & Raizenne, M. E. (1995). Health effects of particulate air pollution: time for reassessment? Environmental Health Perspectives, 103(5), 472-480. doi:10.1289/ehp.95103472

Giechaskiel, B., Dilara, P., Sandbach, E., & Andersson, J. (2008). Particle measurement programme (PMP) light-duty inter-laboratory exercise: comparison of different particle number measurement systems. Measurement Science and Technology, 19(9), 095401. doi:10.1088/0957-0233/19/9/095401

Park, K., Kittelson, D. B., & McMurry, P. H. (2004). Structural Properties of Diesel Exhaust Particles Measured by Transmission Electron Microscopy (TEM): Relationships to Particle Mass and Mobility. Aerosol Science and Technology, 38(9), 881-889. doi:10.1080/027868290505189

LUO, C.-H., LEE, W.-M., & LIAW, J.-J. (2009). Morphological and semi-quantitative characteristics of diesel soot agglomerates emitted from commercial vehicles and a dynamometer. Journal of Environmental Sciences, 21(4), 452-457. doi:10.1016/s1001-0742(08)62291-3

Matti Maricq, M. (2007). Chemical characterization of particulate emissions from diesel engines: A review. Journal of Aerosol Science, 38(11), 1079-1118. doi:10.1016/j.jaerosci.2007.08.001

Smith, O. I. (1981). Fundamentals of soot formation in flames with application to diesel engine particulate emissions. Progress in Energy and Combustion Science, 7(4), 275-291. doi:10.1016/0360-1285(81)90002-2

Haynes, B. S., & Wagner, H. G. (1981). Soot formation. Progress in Energy and Combustion Science, 7(4), 229-273. doi:10.1016/0360-1285(81)90001-0

Bockhorn, H. (Ed.). (1994). Soot Formation in Combustion. Springer Series in Chemical Physics. doi:10.1007/978-3-642-85167-4

Tree, D. R., & Svensson, K. I. (2007). Soot processes in compression ignition engines. Progress in Energy and Combustion Science, 33(3), 272-309. doi:10.1016/j.pecs.2006.03.002

Kennedy, I. M. (1997). Models of soot formation and oxidation. Progress in Energy and Combustion Science, 23(2), 95-132. doi:10.1016/s0360-1285(97)00007-5

Buonanno, G., Dell’Isola, M., Stabile, L., & Viola, A. (2011). Critical aspects of the uncertainty budget in the gravimetric PM measurements. Measurement, 44(1), 139-147. doi:10.1016/j.measurement.2010.09.037

Symonds, J. P. R., Reavell, K. S. J., Olfert, J. S., Campbell, B. W., & Swift, S. J. (2007). Diesel soot mass calculation in real-time with a differential mobility spectrometer. Journal of Aerosol Science, 38(1), 52-68. doi:10.1016/j.jaerosci.2006.10.001

Luque de Castro, M. D., & Priego-Capote, F. (2010). Soxhlet extraction: Past and present panacea. Journal of Chromatography A, 1217(16), 2383-2389. doi:10.1016/j.chroma.2009.11.027

Wang, S. C., & Flagan, R. C. (1990). Scanning Electrical Mobility Spectrometer. Aerosol Science and Technology, 13(2), 230-240. doi:10.1080/02786829008959441

Snegirev, A. Y., Makhviladze, G. ., & Roberts, J. . (2001). The effect of particle coagulation and fractal structure on the optical properties and detection of smoke. Fire Safety Journal, 36(1), 73-95. doi:10.1016/s0379-7112(00)00037-0

Zhou, Z.-Q., Ahmed, T. U., & Y. Choi, M. (1998). Measurement of dimensionless soot extinction constant using a gravimetric sampling technique. Experimental Thermal and Fluid Science, 18(1), 27-32. doi:10.1016/s0894-1777(98)10005-5

Arregle, J., Bermúdez, V., Serrano, J. R., & Fuentes, E. (2006). Procedure for engine transient cycle emissions testing in real time. Experimental Thermal and Fluid Science, 30(5), 485-496. doi:10.1016/j.expthermflusci.2005.10.002

Bermúdez, V., Luján, J. M., Serrano, J. R., & Pla, B. (2008). Transient particle emission measurement with optical techniques. Measurement Science and Technology, 19(6), 065404. doi:10.1088/0957-0233/19/6/065404

Giechaskiel, B., Maricq, M., Ntziachristos, L., Dardiotis, C., Wang, X., Axmann, H., … Schindler, W. (2014). Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. Journal of Aerosol Science, 67, 48-86. doi:10.1016/j.jaerosci.2013.09.003

Lapuerta, M., Armas, O., & Gómez, A. (2003). Diesel Particle Size Distribution Estimation from Digital Image Analysis. Aerosol Science and Technology, 37(4), 369-381. doi:10.1080/02786820300970

Desantes, J. M., Bermúdez, V., Molina, S., & Linares, W. G. (2011). Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions. Measurement Science and Technology, 22(11), 115101. doi:10.1088/0957-0233/22/11/115101

Roessler, D. M. (1982). Diesel particle mass concentration by optical techniques. Applied Optics, 21(22), 4077. doi:10.1364/ao.21.004077

Park, D., Kim, S., An, M., & Hwang, J. (2007). Real-time measurement of submicron aerosol particles having a log-normal size distribution by simultaneously using unipolar diffusion charger and unipolar field charger. Journal of Aerosol Science, 38(12), 1240-1245. doi:10.1016/j.jaerosci.2007.09.002

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record