- -

On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calabuig Rodriguez, Jose Manuel es_ES
dc.contributor.author Delgado Garrido, Olvido es_ES
dc.contributor.author Juan Blanco, María Aránzazu es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2016-02-02T11:18:31Z
dc.date.available 2016-02-02T11:18:31Z
dc.date.issued 2014-01
dc.identifier.issn 0010-0757
dc.identifier.uri http://hdl.handle.net/10251/60466
dc.description.abstract We study some Banach lattice properties of the space L-w(1)(v) of weakly integrable functions with respect to a vector measure v defined on a delta-ring. Namely, we analyze order continuity, order density and Fatou type properties. We will see that the behavior of L-w(1)(v) differs from the case in which is defined on a sigma-algebra whenever does not satisfy certain local sigma-finiteness property. es_ES
dc.description.sponsorship J. M. Calabuig and M. A. Juan were supported by the Ministerio de Economia y Competitividad (project MTM2008-04594). O. Delgado was supported by the Ministerio de Economia y Competitividad (project MTM2009-12740-C03-02). E. A. Sanchez Perez was supported by the Ministerio de Economia y Competitividad (project MTM2009-14483-C02-02). en_EN
dc.language Inglés es_ES
dc.publisher Universitat de Barcelona es_ES
dc.relation.ispartof Collectanea Mathematica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Banach lattice es_ES
dc.subject Delta-ring es_ES
dc.subject Fatou property es_ES
dc.subject Order density es_ES
dc.subject Order continuity es_ES
dc.subject Integration with respect to vector measures es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13348-013-0081-8
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2008-04594/ES/ANALISIS DE FOURIER CLASICO, MULTILINEAL Y VECTORIAL/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-12740-C03-02/ES/Ortogonalidad, Teoria De La Aproximacion Y Sus Aplicaciones En Ciencia Y Tecnologia./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-14483-C02-02/ES/Integracion Bilineal, Medidas Vectoriales Y Espacios De Funciones De Banach./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Calabuig Rodriguez, JM.; Delgado Garrido, O.; Juan Blanco, MA.; Sánchez Pérez, EA. (2014). On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring. Collectanea Mathematica. 65(1):67-85. doi:10.1007/s13348-013-0081-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s13348-013-0081-8 es_ES
dc.description.upvformatpinicio 67 es_ES
dc.description.upvformatpfin 85 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 278738 es_ES
dc.identifier.eissn 2038-4815
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Brooks, J.K., Dinculeanu, N.: Strong additivity, absolute continuity and compactness in spaces of measures. J. Math. Anal. Appl. 45, 156–175 (1974) es_ES
dc.description.references Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364, 88–103 (2010) es_ES
dc.description.references Calabuig, J.M., Juan, M.A., Sánchez Pérez, E.A.: Spaces of $$p$$ -integrable functions with respect to a vector measure defined on a $$\delta $$ -ring. Oper. Matrices 6, 241–262 (2012) es_ES
dc.description.references Curbera, G.P.: El espacio de funciones integrables respecto de una medida vectorial. Ph. D. thesis, University of Sevilla, Sevilla (1992) es_ES
dc.description.references Curbera, G.P.: Operators into $$L^1$$ of a vector measure and applications to Banach lattices. Math. Ann. 293, 317–330 (1992) es_ES
dc.description.references Curbera, G.P., Ricker, W.J.: Banach lattices with the Fatou property and optimal domains of kernel operators. Indag. Math. (N.S.) 17, 187–204 (2006) es_ES
dc.description.references G. P. Curbera and W. J. Ricker, Vector measures, integration and applications. In: Positivity (in Trends Math.), Birkhäuser, Basel, pp. 127–160 (2007) es_ES
dc.description.references Curbera, G.P., Ricker, W.J.: The Fatou property in $$p$$ -convex Banach lattices. J. Math. Anal. Appl. 328, 287–294 (2007) es_ES
dc.description.references Delgado, O.: $$L^1$$ -spaces of vector measures defined on $$\delta $$ -rings. Arch. Math. 84, 432–443 (2005) es_ES
dc.description.references Delgado, O.: Optimal domains for kernel operators on $$[0,\infty )\times [0,\infty )$$ . Studia Math. 174, 131–145 (2006) es_ES
dc.description.references Delgado, O., Soria, J.: Optimal domain for the Hardy operator. J. Funct. Anal. 244, 119–133 (2007) es_ES
dc.description.references Delgado, O., Juan, M.A.: Representation of Banach lattices as $$L_w^1$$ spaces of a vector measure defined on a $$\delta $$ -ring. Bull. Belg. Math. Soc. Simon Stevin 19(2), 239–256 (2012) es_ES
dc.description.references Diestel, J., Uhl, J.J.: Vector measures (Am. Math. Soc. surveys 15). American Mathematical Society, Providence (1997) es_ES
dc.description.references Dinculeanu, N.: Vector measures, Hochschulbcher fr Mathematik, vol. 64. VEB Deutscher Verlag der Wissenschaften, Berlin (1966) es_ES
dc.description.references Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez Pérez, E.A.: Spaces of $$p$$ -integrable functions with respect to a vector measure. Positivity 10, 1–16 (2006) es_ES
dc.description.references Fremlin, D.H.: Measure theory, broad foundations, vol. 2. Torres Fremlin, Colchester (2001) es_ES
dc.description.references Jiménez Fernández, E., Juan, M.A., Sánchez Pérez, E.A.: A Komlós theorem for abstract Banach lattices of measurable functions. J. Math. Anal. Appl. 383, 130–136 (2011) es_ES
dc.description.references Lewis, D.R.: On integrability and summability in vector spaces. Ill. J. Math. 16, 294–307 (1972) es_ES
dc.description.references Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer, Berlin (1979) es_ES
dc.description.references Luxemburg, W.A.J., Zaanen, A.C.: Riesz spaces I. North-Holland, Amsterdam (1971) es_ES
dc.description.references Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. I. Scalar-valued measures on $$\delta $$ -rings. Adv. Math. 73, 204–241 (1989) es_ES
dc.description.references Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration. Adv. Math. 75, 121–167 (1989) es_ES
dc.description.references Thomas, E.G.F.: Vector integration (unpublished) (2013) es_ES
dc.description.references Turpin, Ph.: Intégration par rapport à une mesure à valeurs dans un espace vectoriel topologique non supposé localement convexe, Intègration vectorielle et multivoque, (Colloq., University Caen, Caen, 1975), experiment no. 8, Dèp. Math., UER Sci., University Caen, Caen (1975) es_ES
dc.description.references Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces (Oper. Theory Adv. Appl.), vol. 180. Birkhäuser, Basel (2008) es_ES
dc.description.references Zaanen, A.C.: Riesz spaces II. North-Holland, Amsterdam (1983) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem