- -

On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring

Mostrar el registro completo del ítem

Calabuig Rodriguez, JM.; Delgado Garrido, O.; Juan Blanco, MA.; Sánchez Pérez, EA. (2014). On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring. Collectanea Mathematica. 65(1):67-85. doi:10.1007/s13348-013-0081-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60466

Ficheros en el ítem

Metadatos del ítem

Título: On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring
Autor: Calabuig Rodriguez, Jose Manuel Delgado Garrido, Olvido Juan Blanco, María Aránzazu Sánchez Pérez, Enrique Alfonso
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Fecha difusión:
Resumen:
We study some Banach lattice properties of the space L-w(1)(v) of weakly integrable functions with respect to a vector measure v defined on a delta-ring. Namely, we analyze order continuity, order density and Fatou type ...[+]
Palabras clave: Banach lattice , Delta-ring , Fatou property , Order density , Order continuity , Integration with respect to vector measures
Derechos de uso: Reserva de todos los derechos
Fuente:
Collectanea Mathematica. (issn: 0010-0757 ) (eissn: 2038-4815 )
DOI: 10.1007/s13348-013-0081-8
Editorial:
Universitat de Barcelona
Versión del editor: http://dx.doi.org/10.1007/s13348-013-0081-8
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2008-04594/ES/ANALISIS DE FOURIER CLASICO, MULTILINEAL Y VECTORIAL/ /
info:eu-repo/grantAgreement/MICINN//MTM2009-12740-C03-02/ES/Ortogonalidad, Teoria De La Aproximacion Y Sus Aplicaciones En Ciencia Y Tecnologia./
info:eu-repo/grantAgreement/MICINN//MTM2009-14483-C02-02/ES/Integracion Bilineal, Medidas Vectoriales Y Espacios De Funciones De Banach./
Agradecimientos:
J. M. Calabuig and M. A. Juan were supported by the Ministerio de Economia y Competitividad (project MTM2008-04594). O. Delgado was supported by the Ministerio de Economia y Competitividad (project MTM2009-12740-C03-02). ...[+]
Tipo: Artículo

References

Brooks, J.K., Dinculeanu, N.: Strong additivity, absolute continuity and compactness in spaces of measures. J. Math. Anal. Appl. 45, 156–175 (1974)

Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364, 88–103 (2010)

Calabuig, J.M., Juan, M.A., Sánchez Pérez, E.A.: Spaces of $$p$$ -integrable functions with respect to a vector measure defined on a $$\delta $$ -ring. Oper. Matrices 6, 241–262 (2012) [+]
Brooks, J.K., Dinculeanu, N.: Strong additivity, absolute continuity and compactness in spaces of measures. J. Math. Anal. Appl. 45, 156–175 (1974)

Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364, 88–103 (2010)

Calabuig, J.M., Juan, M.A., Sánchez Pérez, E.A.: Spaces of $$p$$ -integrable functions with respect to a vector measure defined on a $$\delta $$ -ring. Oper. Matrices 6, 241–262 (2012)

Curbera, G.P.: El espacio de funciones integrables respecto de una medida vectorial. Ph. D. thesis, University of Sevilla, Sevilla (1992)

Curbera, G.P.: Operators into $$L^1$$ of a vector measure and applications to Banach lattices. Math. Ann. 293, 317–330 (1992)

Curbera, G.P., Ricker, W.J.: Banach lattices with the Fatou property and optimal domains of kernel operators. Indag. Math. (N.S.) 17, 187–204 (2006)

G. P. Curbera and W. J. Ricker, Vector measures, integration and applications. In: Positivity (in Trends Math.), Birkhäuser, Basel, pp. 127–160 (2007)

Curbera, G.P., Ricker, W.J.: The Fatou property in $$p$$ -convex Banach lattices. J. Math. Anal. Appl. 328, 287–294 (2007)

Delgado, O.: $$L^1$$ -spaces of vector measures defined on $$\delta $$ -rings. Arch. Math. 84, 432–443 (2005)

Delgado, O.: Optimal domains for kernel operators on $$[0,\infty )\times [0,\infty )$$ . Studia Math. 174, 131–145 (2006)

Delgado, O., Soria, J.: Optimal domain for the Hardy operator. J. Funct. Anal. 244, 119–133 (2007)

Delgado, O., Juan, M.A.: Representation of Banach lattices as $$L_w^1$$ spaces of a vector measure defined on a $$\delta $$ -ring. Bull. Belg. Math. Soc. Simon Stevin 19(2), 239–256 (2012)

Diestel, J., Uhl, J.J.: Vector measures (Am. Math. Soc. surveys 15). American Mathematical Society, Providence (1997)

Dinculeanu, N.: Vector measures, Hochschulbcher fr Mathematik, vol. 64. VEB Deutscher Verlag der Wissenschaften, Berlin (1966)

Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez Pérez, E.A.: Spaces of $$p$$ -integrable functions with respect to a vector measure. Positivity 10, 1–16 (2006)

Fremlin, D.H.: Measure theory, broad foundations, vol. 2. Torres Fremlin, Colchester (2001)

Jiménez Fernández, E., Juan, M.A., Sánchez Pérez, E.A.: A Komlós theorem for abstract Banach lattices of measurable functions. J. Math. Anal. Appl. 383, 130–136 (2011)

Lewis, D.R.: On integrability and summability in vector spaces. Ill. J. Math. 16, 294–307 (1972)

Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer, Berlin (1979)

Luxemburg, W.A.J., Zaanen, A.C.: Riesz spaces I. North-Holland, Amsterdam (1971)

Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. I. Scalar-valued measures on $$\delta $$ -rings. Adv. Math. 73, 204–241 (1989)

Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration. Adv. Math. 75, 121–167 (1989)

Thomas, E.G.F.: Vector integration (unpublished) (2013)

Turpin, Ph.: Intégration par rapport à une mesure à valeurs dans un espace vectoriel topologique non supposé localement convexe, Intègration vectorielle et multivoque, (Colloq., University Caen, Caen, 1975), experiment no. 8, Dèp. Math., UER Sci., University Caen, Caen (1975)

Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces (Oper. Theory Adv. Appl.), vol. 180. Birkhäuser, Basel (2008)

Zaanen, A.C.: Riesz spaces II. North-Holland, Amsterdam (1983)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem