- -

Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers

Show full item record

Chin, S.; Thevenaz, L.; Sancho Durá, J.; Sales Maicas, S.; Capmany Francoy, J.; Berger, P.; Bourderionnet, J.... (2010). Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers. Optics Express. 18(21):22599-22613. https://doi.org/10.1364/OE.18.022599

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60653

Files in this item

Item Metadata

Title: Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
[EN] We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists ...[+]
Subjects: Fiber optics , Analogue signal processing , Scattering , Stimulated Brillouin , Nonlinear optics , Fibers
Copyrigths: Reserva de todos los derechos
Source:
Optics Express. (eissn: 1094-4087 )
DOI: 10.1364/OE.18.022599
Publisher:
Optical Society of America: Open Access Journals
Publisher version: http://dx.doi.org/10.1364/OE.18.022599
Project ID: info:eu-repo/grantAgreement/EC/FP7/219299
Thanks:
We acknowledge the support from the Swiss National Science Foundation through project 200020-121860 and the support from the European Union FP7 project GOSPEL.
Type: Artículo

References

Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89

Dolfi, D., Joffre, P., Antoine, J., Huignard, J.-P., Philippet, D., & Granger, P. (1996). Experimental demonstration of a phased-array antenna optically controlled with phase and time delays. Applied Optics, 35(26), 5293. doi:10.1364/ao.35.005293

Yunqi Liu, Jianliang Yang, & Jianping Yao. (2002). Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line. IEEE Photonics Technology Letters, 14(8), 1172-1174. doi:10.1109/lpt.2002.1022008 [+]
Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89

Dolfi, D., Joffre, P., Antoine, J., Huignard, J.-P., Philippet, D., & Granger, P. (1996). Experimental demonstration of a phased-array antenna optically controlled with phase and time delays. Applied Optics, 35(26), 5293. doi:10.1364/ao.35.005293

Yunqi Liu, Jianliang Yang, & Jianping Yao. (2002). Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line. IEEE Photonics Technology Letters, 14(8), 1172-1174. doi:10.1109/lpt.2002.1022008

Mørk, J., Kjær, R., van der Poel, M., & Yvind, K. (2005). Slow light in a semiconductor waveguide at gigahertz frequencies. Optics Express, 13(20), 8136. doi:10.1364/opex.13.008136

Su, H., Kondratko, P., & Chuang, S. L. (2006). Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers. Optics Express, 14(11), 4800. doi:10.1364/oe.14.004800

Shi, Z., & Boyd, R. W. (2009). Discretely tunable optical packet delays using channelized slow light. Physical Review A, 79(1). doi:10.1103/physreva.79.013805

Morton, P. A., & Khurgin, J. B. (2009). Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier. IEEE Photonics Technology Letters, 21(22), 1686-1688. doi:10.1109/lpt.2009.2031500

Song, K. Y., Herr�ez, M. G., & Th�venaz, L. (2005). Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Optics Express, 13(1), 82. doi:10.1364/opex.13.000082

Thévenaz, L. (2008). Slow and fast light in optical fibres. Nature Photonics, 2(8), 474-481. doi:10.1038/nphoton.2008.147

Nikles, M., Thevenaz, L., & Robert, P. A. (1997). Brillouin gain spectrum characterization in single-mode optical fibers. Journal of Lightwave Technology, 15(10), 1842-1851. doi:10.1109/50.633570

Loayssa, A., & Lahoz, F. J. (2006). Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation. IEEE Photonics Technology Letters, 18(1), 208-210. doi:10.1109/lpt.2005.861307

González Herráez, M., Song, K. Y., & Thévenaz, L. (2006). Arbitrary-bandwidth Brillouin slow light in optical fibers. Optics Express, 14(4), 1395. doi:10.1364/oe.14.001395

Weiqi Xue, Sales, S., Mork, J., & Capmany, J. (2009). Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects. IEEE Photonics Technology Letters, 21(3), 167-169. doi:10.1109/lpt.2008.2009468

Sagues, M., García Olcina, R., Loayssa, A., Sales, S., & Capmany, J. (2008). Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering. Optics Express, 16(1), 295. doi:10.1364/oe.16.000295

[-]

This item appears in the following Collection(s)

Show full item record